
BaCon 3.7.3 documentation

Introduction
BaCon is an acronym for BAsic CONverter. The BaCon BASIC converter is a tool to convert programs written in BASIC
syntax to C. The resulting C code can be compiled using generic C compilers like GCC or CC. It can be compiled with a C+
+ compiler as well.

BaCon intends to be a programming aid in creating small tools which can be compiled on different Unix-based platforms. It
tries to revive the days of the good old BASIC.

The BaCon converter passes expressions and numeric assignments to the C compiler without verification or modification.
Therefore BaCon can be considered a lazy converter: it relies on the expression parser of the C compiler.

BaCon usage and parameters
To use BaCon, download the converter and make sure the program has executable rights. The converter can be used as
follows:

 bash ./bacon.sh myprog.bac

By default the converter will refer to '/bin/bash' by itself. It uses a so-called 'shebang' which allows the program to run
standalone provided the executable rights are set correctly. This way there is no need to execute BaCon with an explicit use
of BASH. So this is valid:

 ./bacon.sh myprog.bac

Alternatively, different versions of Kornshell and Zshell can be used also:

 mksh ./bacon.sh myprog.bac

 pdksh ./bacon.sh myprog.bac

 zsh ./bacon.sh myprog.bac

All BaCon programs should use the '.bac' extension. But it is not necessary to provide this extension for conversion. So
BaCon also understands the following syntax:

 ./bacon.sh myprog

Another possibility is to point to the URL of a BaCon program hosted by a website. The program will then be downloaded
automatically, after which it is converted:

 ./bacon.sh http://www.basic-converter.org/fetch.bac

The BaCon Basic Converter can be started with the following parameters.

• -c: determine which C compiler should create the binary. The default value is 'gcc'. Example: ./bacon -c cc prog. In
this situation, the converted program will be compiled by a C compiler called 'cc'

• -l: pass a library to the C linker

• -o: pass a compiler option to the C compiler

• -i: the compilation will use an additional external C include file

• -d: determine the directory where BaCon should store the generated C files. Default value is the current directory

• -x: extract gettext strings from generated c sources

• -z: allow the usage of lowercase statements and functions

• -a: recreate the BaCon static archive

• -b: defines which archiver program to use for creating the BaCon archive

• -r: defines the ranlib program to index the objects in the BaCon archive

http://en.wikipedia.org/wiki/BASIC_programming_language
http://en.wikipedia.org/wiki/Shebang_(Unix)

• -f: create a shared object of the program

• -n: do not compile the C code automatically after conversion

• -y: suppress warning about temporary files if these exist

• -j: invoke C preprocessor to interpret C macros which were added to BaCon source code

• -p: do not cleanup the generated C files. Default behavior is to delete all generated C files automatically

• -q: suppress line counting during conversion and only show summary after conversion

• -s: suppress warnings about semantic errors

• -w: store commandline settings in a configuration file. This file will be used in subsequent invocations of BaCon
(not applicable for the GUI version)

• -v: shows the current version of BaCon

• -h: shows an overview of all possible options on the prompt. Same as the '-?' parameter

Here are a few examples showing the usage of command line parameters:

• Convert and compile program with debug symbols: bacon -o -g program.bac

• Convert and compile program , optimize and strip: bacon -o -O2 -o -s program.bac

• Convert and compile program and export functions as symbols: bacon -o -export-dynamic yourprogram.bac

• Convert and compile program using TCC and export functions as symbols: bacon -c tcc -o -rdynamic
yourprogram.bac

• Convert and compile program forcing 32bit and optimize for current platform: bacon -o -m32 -o -mtune=native
yourprogram.bac

• Convert and compile program linking to a particular library: bacon -l somelib program.bac

• Convert and compile program including an additional C header file: bacon -i header.h yourprogram.bac

Most of the above options also can be used programmatically by use of the PRAGMA keyword.

General syntax
BaCon consists of statements, functions and expressions. Each line should begin with a statement. A line may continue onto
the next line by using a space and the '\' symbol at the end of the line. The LET statement may be omitted, so a line may
contain an assignment only. Expressions are not converted, but are passed unchanged to the C compiler (lazy conversion).

BaCon does not need line numbers. More statements per line are accepted. These should be separated by the colon symbol
':'.

All keywords must be written in capitals to avoid name clashes with existing C keywords or functions from libc. Keywords
in small letters are considered to be variables unless the '-z' command line option is specified, in which case BaCon tries to
parse lowercase keywords as if they were written in capitals. Note that this may lead to unexpected results, for example if
the program uses variable names which happen to be BaCon keywords.

Statements are always written without using brackets. Functions however must use brackets to enclose their arguments.
Functions always return a value or string, contrary to subs. Functions created in the BaCon program can be invoked
standalone, meaning that they do not need to appear in an assignment.

Subroutines may be defined using SUB/ENDSUB and do not return a value. With the FUNCTON/ENDFUNCTION
statements a function can be defined which does return a value. The return value must be explicitly stated with the statement
RETURN.

The three main variable types in BaCon are defined as STRING, NUMBER and FLOATING. These are translated to char*,
long and double.

A variable will be declared implicitly when the variable is used in an assignment (e.g. LET) or in a statement which assigns
a value to a variable. By default, implicitly declared variables are of 'long' type. This default can be changed by using the
OPTION VARTYPE statement. Note that implicitly declared variables always have a global scope, meaning that they are
visible to all functions and routines in the whole program. Variables which are used and implicitly declared within a SUB or

FUNCTION also by default have a global scope. When declared with the LOCAL statement variables will have a scope
local to the FUNCTION or SUB.

In case of implicit assignments, BaCon assumes numeric variables to be of long type, unless specified otherwise with
OPTION VARTYPE. Also, it is possible to define a variable to any other C-type explicitly using the DECLARE and
LOCAL statements.

Next to this, BaCon accepts type suffixes as well. For example, if a variable name ends with the '$' symbol, a string variable
is assumed. If a variable name ends with the '#' symbol, a float variable is assumed. If a variable name ends with the '%'
symbol, it is considered to be an integer variable. The type suffixes also can be used when defining a function name.

Mathematics, variables
The standard C operators for mathematics can be used, like '+' for addition, '-' for subtraction, '/' for division and '*' for
multiplication. For the binary 'and', the '&' symbol must be used, and for the binary 'or' use the pipe symbol '|'. Binary shifts
are possible with '>>' and '<<'.

C operator Meaning C Operator Meaning

+ Addition | Inclusive or

- Subtraction ^ Exclusive or

* Multiplication >> Binary shift right

/ Division << Binary shift left

& Binary and +=, -=, *=, /= Invalid in BaCon

The C operators '+=', '-=' and the like are not valid in BaCon. Use INCR or DECR instead.

Variable names may be of any length but may not start with a number or an underscore symbol.

Equations
Equations are used in statements like IF...THEN, WHILE...WEND, and REPEAT...UNTIL. In BaCon the following
symbols for equations can be used:

Symbol Meaning Type

=, == Equal to String, numeric

!=, <> Not equal to String, numeric

> Greater than String, numeric also allows GT

< Less than String, numeric also allows LT

>= Greater or equal String, numeric also allows GE

<= Less or equal String, numeric also allows LE

EQ, IS Equal to Numeric

NE, ISNOT Not equal to Numeric

AND, OR Logical and,or String, numeric

BETWEEN In between String, numeric

EQUAL() Equal to String

The BETWEEN keyword
When using equations, it often occurs that a check needs to be performed to see if a certain value lies within a range. For
this purpose, BaCon accepts the BETWEEN comparison keyword. For example:

IF 5 BETWEEN 0;10 THEN PRINT "Found"

This comparison will return TRUE in case the value 5 lies within 0 and 10. The comparison will include the lower and
upper boundary value during evaluation. Note that the lower and upper values are being separated by a semicolon.
Alternatively, the keyword AND may be used here as well, though this may lead to confusing constructs when adding more
logical requirements to the same equation.

The BETWEEN comparison also accepts strings:

IF "C" BETWEEN "Basic" AND "Pascal" THEN PRINT "This is C"

The order of the mentioned range does not matter, the following code will deliver the exact same result:

IF "C" BETWEEN "Pascal" AND "Basic" THEN PRINT "This is C"

In case the boundary values should be excluded, BaCon accepts the optional EXCL keyword:

IF var BETWEEN 7 AND 3 EXCL THEN PRINT "Found"

The last example will print "Found" in case the variable lies within 3 and 7 which are considered to be outside the valid
range.

Indexed arrays
Declaration of static arrays
An array will never be declared implicitly by BaCon, so arrays must be declared explicitly. This can be done by using the
keyword GLOBAL or DECLARE for arrays which should be globally visible, or LOCAL for local array variables.

Arrays must be declared in the C syntax, using square brackets for each dimension. For example, a local string array must
be declared like this: 'LOCAL array$[5]'. Two-dimensional arrays are written like 'array[5][5]', three-dimensional arrays like
'array[5][5][5]' and so on.

In BaCon, static numeric arrays can have all dimensions, but static string arrays cannot have more than one dimension.

Declaration of dynamic arrays
Also dynamic arrays must be declared explicitly. To declare a dynamic array, the statements GLOBAL or LOCAL must be
used together with the ARRAY keyword, which determines the amount of elements. For example, to declare a dynamic
array of 5 integer elements: 'LOCAL array TYPE int ARRAY 5'.

The difference with a static array is that the size of a dynamic array can declared using variables, and that their size can be
redimensioned during runtime. The latter can be achieved with the REDIM statement. This is only possible for arrays with
one dimension.

As with static numeric arrays, also dynamic numeric arrays can have all dimensions, and dynamic string arrays cannot have
more than one dimension. The syntax to refer to elements in a dynamic array is the same as the syntax for elements in a
static array.

Dimensions
Static arrays must be declared with fixed dimensions, meaning that it is not possible to determine the dimensions of an array
using variables or functions, so during program runtime. The reason for this is that the C compiler needs to know the array
dimensions during compile time. Therefore the dimensions of an array must be defined with fixed numbers or with CONST
definitions. Also, the size of a static array cannot be changed afterwards.

Dynamic arrays however can be declared with variable dimensions, meaning that the size of such an array also can be
expressed by a variable. Furthermore, the size of a one dimensional dynamic array can be changed afterwards with the
REDIM statement. This statement also works for implicitly created dynamic arrays in the SPLIT and LOOKUP statements.

By default, if an array is declared with 5 elements, then it means that the array elements range from 0 to 4. Element 5 is not
part of the array. This behavior can be changed using the OPTION BASE statement. If OPTION BASE is set to 1, an array
declared with 5 elements will have a range from 1 to 5.

Passing arrays to functions or subs
In BaCon it is possible to pass one-dimensional arrays to a function or sub. The caller should simply use the basename of
the array (so without mentioning the dimension of the array).

When the function or sub argument mentions the dimension, a local copy of the array is created.

CONST dim = 2
DECLARE series[dim] TYPE NUMBER

SUB demo(NUMBER array[dim])
 array[0] = 987
 array[1] = 654
END SUB

series[0] = 123
series[1] = 456
demo(series)
FOR x = 0 TO dim - 1
 PRINT series[x]
NEXT

This will print the values originally assigned. The sub does not change the original assignments.

When the function or sub argument does not mention the dimension, but only uses square brackets, the array is passed by
reference.

CONST dim = 2
DECLARE series[dim] TYPE NUMBER

SUB demo(NUMBER array[])
 array[0] = 987
 array[1] = 654
END SUB

series[0] = 123
series[1] = 456
demo(series)
FOR x = 0 TO dim - 1
 PRINT series[x]
NEXT

This will modify the original array and prints the values assigned in the sub.

Returning arrays from functions
In BaCon it is also possible to return a one dimensional array from a function. This can only be done with dynamic arrays,
as the static arrays always use the stack memory assigned to a function. This means, that when a function is finished, also
the memory for that function is destroyed, together with the variables and static arrays in that function. Therefore only
dynamic arrays can be returned.

The syntax to return a one dimensional dynamic array involves two steps: the declaration of the array must contain the
STATIC keyword, and the RETURN argument should only contain the basename of the array without mentioning the
dimensions. For example:

FUNCTION demo
 LOCAL array TYPE int ARRAY 10 STATIC
 FOR x = 0 TO 9
 array[x] = x
 NEXT
 RETURN array
END FUNCTION
DECLARE my_array TYPE int ARRAY 10
my_array = demo()

This example will create a dynamic array and assign some initial values, after which it is returned from the function. The
target 'my_array' now will contain the values assigned in the function.

The statements SPLIT, LOOKUP and MAP also accept the STATIC keyword, which allows the implicitly created dynamic
array containing results to be returned from a function.

Note that when returning arrays, the assigned array should have the same dimensions in order to prevent memory errors.

Associative arrays
Declaration
An associative array is an array of which the index is determined by a string, instead of a number. Associative arrays use
round brackets '(...)' instead of the square brackets '[...]' used by normal arrays.

An associative array can use any kind of string for the index, and it can have an unlimited amount of elements. The
declaration of associative arrays therefore never mentions the range. An associative array can have any amount of
dimension. Note that the OPTION BASE statement has no impact.

To declare an associative array, the following syntax applies: DECLARE info ASSOC int. This declares an array containing
integer values. To assign a value, using a random string "abcd" as example: info("abcd") = 1. Similarly an associative
array containing other types can be declared, for example strings: DECLARE txt$ ASSOC STRING.

As with other variables, declaring associative arrays within a function using LOCAL will ensure a local scope of the array.

For the index, it is also possible to use the STR$ function to convert numbers or numerical variables to strings: PRINT txt$
(STR$(123)).

Relations, lookups, keys
In BaCon it is possible to setup relations between associative arrays of the same type. This may be convenient when
multiple arrays with the same index need to be set at once. To setup a relation the RELATE keyword can be used, e.g.:
RELATE assoc TO other. Now for each index in the array 'assoc', the same index in the array 'other' is set.

Next to this, the actual index names in an associative array can be looked up using the LOOKUP statement. This statement
returns a dynamically created array containing all indexes. The size of the resulting array is dynamically declared as it
depends on the amount of available elements. Instead of creating a dynamic array, it is also possible to return the indexes
into a delimited string by using OBTAIN$.

To find out if a key already was defined in the associative array, the function ISKEY can be used. This function needs the
array name and the string containing the index name, and will return either TRUE or FALSE, depending on whether the
index is defined (TRUE) or not (FALSE).

The function NRKEYS will return the amount of members in an associative array.

Deleting individual associative array members can be done by using the FREE statement. This will leave the associative
array insertion order intact. The FREE statement also can be used to delete a full associative array in one step.

Lastly, the values of an associative array can be sorted using the SORT statement. The actual keys of the array will then be
sorted as well, so the array remains intact. A sort action will actually order the elements of the associative array in memory.
When using LOOKUP or OBTAIN$, the keys will then appear in a sorted order based on the values of the associative array.

Basic logic programming
With the current associative array commands it is possible to perform basic logic programming. Consider the following
Logic program which can be executed with any Prolog implementation:

mortal(X) :- human(X).

human(socrates).
human(sappho).
human(august).

mortals_are:
 write('Mortals are:'),
 mortal(X),
 write(X),
 fail.

The following BaCon program does the same thing:

DECLARE human, mortal ASSOC int
RELATE human TO mortal

human("socrates") = TRUE
human("sappho") = TRUE
human("august") = TRUE

PRINT "Mortals are:"
LOOKUP mortal TO member$ SIZE amount
FOR x = 0 TO amount - 1
 PRINT member$[x]
NEXT

Records
Declaration
Records are collections of variables which belong together. A RECORD has a name by itself and members of the record can
be accessed by using the <name>.<member> notation. The members should be declared using the LOCAL statement. For
example:

RECORD rec
 LOCAL value
 LOCAL nr[5]
END RECORD
rec.value = 99

As soon a record is created, it also exists as a type. The name of the type always consists of the record name followed by the
'_type' suffix. From then on, it is possible to declare other variables as being of the same type. To continue with the same
example:

DECLARE var TYPE rec_type
var.value = 123

Arrays of records
Record definitions also can be created as static arrays or as dynamic arrays. The size of the static array is determined during
compile time and the data will be stored in the stack frame of a SUB or FUNCTION. This means that the array data is lost
when the SUB or FUNCTION is ended. Example of a static array definition:

RECORD data[10]
 LOCAL info$
END RECORD

To declare a dynamic array of records, the keyword ARRAY must be used. The size of a dynamic record array is determined
during runtime, and therefore, can be set with variables and functions. The data is stored in the heap. The BaCon memory
management will clean up the data when leaving a FUNCTION or SUB. Example:

RECORD data ARRAY 10
 LOCAL name$[5]
 LOCAL age[5]
END RECORD

Note that dynamic arrays of records do not allow members which are dynamic arrays themselves.

Passing records to functions or subs
To pass a record, simply declare the variable name with the appropriate record type in the header of the function or sub.
Example code:

RECORD rec
 LOCAL nr
 LOCAL area$
END RECORD

SUB subroutine(rec_type var)
 PRINT var.nr
 PRINT var.area$
ENDSUB
rec.nr = 123
rec.area$ = "europe"
CALL subroutine(rec)

Similarly, it is possible to pass an array of records as well. Note the square brackets in the function header:

RECORD rec ARRAY 10
 LOCAL nr
 LOCAL area$
END RECORD
SUB subroutine(rec_type var[])
 PRINT var[0].nr
 PRINT var[0].area$
ENDSUB
rec[0].nr = 123
rec[0].area$ = "europe"
CALL subroutine(rec)

Returning records from functions
In order to return a record from a function, the record type must be visible to the caller. The below example declares the
record in the main program. The function declares a variable of the same type and initializes the record to 0. This
initialization is obligatory for string members to work properly. Then some values are assigned. Lastly, the complete record
is returned to the caller:

RECORD rec
 LOCAL id
 LOCAL zip$[2]
END RECORD

FUNCTION func TYPE rec_type
 LOCAL var = { 0 } TYPE rec_type
 var.id = 1
 var.zip$[0] = "XJ342"
 var.zip$[1] = "YP198"
 RETURN var
ENDFUNCTION
rec = func()
PRINT rec.id
PRINT rec.zip$[0]
PRINT rec.zip$[1]

Strings by value or by reference
Strings can be stored by value or by reference. By value means that a copy of the original string is stored in a variable. This
happens automatically when when a string variable name ends with the '$' symbol.

Sometimes it may be necessary to refer to a string by reference. In such a case, simply declare a variable name as STRING
but omit the '$' at the end. Such a variable will point to the same memory location as the original string. The following
examples should show the difference between by value and by reference.

When using string variables by value:

a$ = "I am here"
b$ = a$
a$ = "Hello world..."
PRINT a$, b$

This will print "Hello world...I am here". The variables point to their individual memory areas so they contain different

strings. Now consider the following code:

a$ = "Hello world..."
LOCAL b TYPE STRING
b = a$
a$ = "Goodbye..."
PRINT a$, b FORMAT "%s%s\n"

This will print "Goodbye...Goodbye..." because the variable 'b' points to the same memory area as 'a$'. (The optional
FORMAT forces the variable 'b' to be printed as a string, otherwise BaCon assumes that the variable 'b' contains a value.)

Note that as soon an existing string variable is referred to by a reference variable, the string will not profit from the
optimized high performance string engine anymore.

ASCII, Unicode, UTF8
BaCon is a byte oriented converter. This means it always will assume that a string consists of a sequence of ASCII bytes.
Though this works fine for plain ASCII strings, it will cause unexpected results in case of non-Latin languages, like Chinese
or Cyrillic. However, BaCon supports UTF8 encoded strings also.

In order to work with UTF8 strings, OPTION UTF8 needs to be enabled. It will put all string related functions in UTF8
mode at the cost of some performance loss in string processing.

Next to this option, BaCon also provides a few functions which relate of UTF8 encoding. The following functions work
independently from OPTION UTF8:

• ULEN will correctly calculate the actual characters based on the binary UTF8 sequence.

• BYTELEN will show the actual amount of bytes used by a UTF8 string.

• ISASCII can be used to verify if a string only consists of ASCII data.

• UTF8$ needs the Unicode value as argument and returns the corresponding character depending on environment
settings and the current font type.

• UCS needs a UTF8 character as an argument and returns the corresponding Unicode value.

Creating and linking to libraries created with BaCon
With Bacon, it is possible to create libraries. In the world of Unix these are known as shared objects. The following steps
should explain how to create and link to BaCon libraries.

Step 1: create a library
The below program only contains a function, which accepts one argument and returns a value.

FUNCTION bla (NUMBER n)
 LOCAL i
 i = 5 * n
 RETURN i
END FUNCTION

In this example, the program will be saved as 'libdemo.bac'. Note that the name must begin with the prefix 'lib'. This is a
Unix convention. The linker will search for library names starting with these three letters.

Step 2: compile the library
The program must be compiled using the '-f' flag: bacon -f libdemo.bac

This will create a file called 'libdemo.so'.

Step 3: copy library to a system path
To use the library, it must be located in a place which is known to the linker. There are several ways to achieve this. For
sake of simplicity, in this example the library will be copied to a system location. It is common usage to copy additional
libraries to '/usr/local/lib': sudo cp libdemo.so /usr/local/lib

Step 4: update linker cache
The linker now must become aware that there is a new library. Update the linker cache with the following command: sudo
ldconfig

Step 5: demonstration program
The following program uses the function from the new library:

PROTO bla
x = 5
result = bla(x)
PRINT result

This program first declares the function 'bla' as prototype, so the BaCon parser will not choke on this external function.
Then the external function is invoked and the result is printed on the screen.

Step 6: compile and link
Now the program must be compiled with reference to the library created before. This can be done as follows: ./bacon -l
demo program.bac

With the Unix command 'ldd' it will be visible that the resulting binary indeed has a dependency with the new library.

When executed, the result of this program should show 25.

Remarks
In case global dynamic string arrays are used by the BaCon shared object, then these need to be initialized prior to using the
arrays. This can be done by calling a special function available in each shared object created in BaCon: the 'BaCon_init()'
function. In case the shared object is compiled by a GNU C compatible compiler, then this function is executed
automatically.

Creating internationalization files
It is possible to create internationalized strings for a BaCon program. In order to do so, OPTION INTERNATIONAL
should be enabled in the beginning of the program. After this, make sure that each translatable string is surrounded by the
INTL$ or NNTL$ function.

Now start BaCon and use the '-x' option. This will generate a template for the catalog file, provided that the 'xgettext' utility
is available on your platform. The generated template by default has the same name as your BaCon program, but with a
'.pot' extension.

Then proceed with the template file and fill in the needed translations, create the PO file as usual and copy the binary
formatted catalog to the base directory of the catalog files (default: "/usr/share/locale").

The default textdomain and base directory can be changed with the TEXTDOMAIN statement.

Below a complete sequence of steps creating internationalization files. Make sure the GNU gettext utilities are installed.

Step 1: create program
The following simple program should be translated:

OPTION INTERNATIONAL TRUE
PRINT INTL$("Hello cruel world!")
x = 2
PRINT x FORMAT NNTL$("There is %ld green bottle", "There are %ld green bottles", x)

This program is saved as 'hello.bac'.

Step 2: compile program
Now compile the program using the '-x' option.

bacon -x hello.bac

Next to the resulting binary, a template catalog file is created called 'hello.pot'.

Step 3: create catalog file
At the command line prompt, run the 'msginit' utility on the generated template file.

msginit -l nl_NL -o hello.po -i hello.pot

In this example the nl_NL locale is used, which is Dutch. This will create a genuine catalog file called 'hello.po' from the
template 'hello.pot'.

Step 4: add translations
Edit the catalog file 'hello.po' manually, by adding the necessary translations.

Step 5: create object file
Again at the command line prompt, run the 'msgfmt' utility to convert the catalog file to a binary machine object file. The
result will have the same name but with an '.mo' extension:

msgfmt -c -v -o hello.mo hello.po

Step 6: install
Copy the resulting binary formatted catalog file 'hello.mo' into the correct locale directory. In this example, the locale used
was 'nl_NL'. Therefore, it needs to be copied to the default textdomain directory '/usr/share/locale' appended with the locale
name, thus: /usr/share/locale/nl_NL. In there, the subdirectory LC_MESSAGES should contain the binary catalog file.

cp hello.mo /usr/share/locale/nl_NL/LC_MESSAGES/

The TEXTDOMAIN statement can be used to change the default directory for the catalog files.

Step 7: setup Unix environment
Finally, the Unix environment needs to understand that the correct locale must be used. To do so, simply set the LANG
environment variable to the desired locale.

export LANG=nl_NL

After this, the BaCon program will show the translated strings.

Networking
TCP
With BaCon it is possible to create programs which have access to TCP networking. The following small demonstration
shows a client program which fetches a website:

OPEN "www.basic-converter.org:80" FOR NETWORK AS mynet
SEND "GET / HTTP/1.1\r\nHost: www.basic-converter.org\r\n\r\n") TO mynet
REPEAT
 RECEIVE dat$ FROM mynet
 total$ = total$ & dat$
UNTIL ISFALSE(WAIT(mynet, 5000))
CLOSE NETWORK mynet
PRINT total

The next program shows how to setup a TCP server which accepts multiple connections. The main program uses OPEN
FOR SERVER multiple times. At each new connection the program forks itself and handles the incoming data:

PRINT "Connect from other terminals with 'telnet localhost 51000' and enter text -
'quit' ends."
WHILE TRUE
 OPEN "localhost:51000" FOR SERVER AS mynet
 spawn = FORK
 IF spawn = 0 THEN
 REPEAT
 RECEIVE dat$ FROM mynet
 PRINT "Found: ", dat$;
 UNTIL LEFT$(dat$, 4) = "quit"
 CLOSE SERVER mynet
 END
 ENDIF
WEND

UDP
The UDP mode can be set with the OPTION NETWORK statement. From then on a network program for UDP looks the
same as a network program for TCP. This is an example client program:

OPTION NETWORK UDP
OPEN "localhost:1234" FOR NETWORK AS mynet
SEND "Hello" TO mynet
CLOSE NETWORK mynet

Example server program:

OPTION NETWORK UDP
OPEN "localhost:1234" FOR SERVER AS mynet
RECEIVE dat$ FROM mynet
CLOSE NETWORK mynet
PRINT dat$

BROADCAST
BaCon also knows how to send data in UDP broadcast mode. For example:

OPTION NETWORK BROADCAST
OPEN "192.168.1.255:12345" FOR NETWORK AS mynet
SEND "Using UDP broadcast" TO mynet
CLOSE NETWORK mynet

Example server program using UDP broadcast, listening to all interfaces:

OPTION NETWORK BROADCAST
OPEN "*:12345" FOR SERVER AS mynet
RECEIVE dat$ FROM mynet
CLOSE NETWORK mynet
PRINT dat$

MULTICAST
If UDP multicast is required then simply specify MULTICAST. Optionally, the TTL can be determined also. Here are the
same examples, but using a multicast address with a TTL of 5:

OPTION NETWORK MULTICAST 5
OPEN "225.2.2.3:1234" FOR NETWORK AS mynet
SEND "This is UDP multicast" TO mynet
CLOSE NETWORK mynet

Example server program using multicast:

OPTION NETWORK MULTICAST
OPEN "225.2.2.3:1234" FOR SERVER AS mynet
RECEIVE dat$ FROM mynet
CLOSE NETWORK mynet
PRINT dat$

SCTP
BaCon also supports networking using the SCTP protocol. Optionally, a value for the amount of streams within one
association can be specified.

OPTION NETWORK SCTP 5
OPEN "127.0.0.1:12380", "172.17.130.190:12380" FOR NETWORK AS mynet
SEND "Hello world" TO mynet
CLOSE NETWORK mynet

An example server program:

OPTION NETWORK SCTP 5
OPEN "127.0.0.1:12380", "172.17.130.190:12380" FOR SERVER AS mynet
RECEIVE txt$ FROM mynet
CLOSE NETWORK mynet

PRINT txt$

Ramdisks and memory streams
When creating programs which need heavy I/O towards the hard drive, it may come handy to create a ramdisk for
performance reasons. Basically, a ramdisk is a storage in memory. While on Unix level administrator rights are required to
create such a disk, BaCon can create an elementary ramdisk during runtime which is accessible within the program.

First, some amount of memory needs to be claimed which has to be opened in streaming mode. This returns a memory
pointer which indicates the current position in memory, similar to a file pointer for files.

Then, the statements GETLINE and PUTLINE can be used to read and write lines of data towards the memory storage. For
example:

memory_chunk = MEMORY(1000)
OPEN memory_chunk FOR MEMORY AS ramdisk
PUTLINE "Hello world" TO ramdisk

If the ramdisk needs to be read from the beginning, use MEMREWIND to reposition the memory pointer. In the next
example, a GETLINE retrieves the line which was stored there:

MEMREWIND ramdisk
GETLINE text$ FROM ramdisk

If the option MEMSTREAM was set to TRUE, BaCon can treat the created ramdisk also as a string variable, which allows
manipulations by using the standard string functions. The variable used for the memory pointer must be a string variable:

OPTION MEMSTREAM TRUE
memory_chunk = MEMORY(1000)
OPEN memory_chunk FOR MEMORY AS ramdisk$
PUTLINE "Hello world" TO ramdisk$
MEMREWIND ramdisk$
IF INSTR(ramdisk$, "world") THEN PRINT "found!
PRINT REPLACE$(ramdisk$, "Hello", "Goodbye")

Always make sure that there is enough memory to perform string changes to the ramdisk. The RESIZE statement safely can
be used to enlarge the claimed memory during runtime, as this will preserve the data.

The contents of the ramdisk can be written to disk using PUTBYTE. However, it must be clear how many bytes need to be
written, as the total amount of memory reserved to the ramdisk may be bigger than the actual amount of data. The function
MEMTELL can be used in case the memory pointer is positioned at the end of the ramdisk:

memory_chunk = MEMORY(1000)
OPEN memory_chunk FOR MEMORY AS ramdisk
 PUTLINE "Hello world" TO ramdisk
 OPEN "ramdisk.txt" FOR WRITING AS txtfile
 PUTBYTE memory_chunk TO txtfile CHUNK MEMTELL(ramdisk)-memory_chunk
 CLOSE FILE txtfile
CLOSE MEMORY ramdisk
FREE memory_chunk

Alternatively, if the ramdisk was opened with OPTION MEMSTREAM set to TRUE, the string function LEN also will
return the length of the data.

Delimited strings
A delimited string is a string which can be cut into parts, based on a character or on a set of characters. An example of such
a string is a plain space delimited line in a textbook, where the words are separated by a whitespace. Another example is an
ASCII file, in which the lines are separated by a newline. A very famous example of a delimited string is the Comma
Separated Value (CSV) string. From another point of view, a delimited string also can be looked at as a list of items, which
is the basis of LISP like languages.

The SPLIT statement can be used to split a string into elements of an array, based on a delimiter. As with all statements and
functions handling delimited strings, the SPLIT statement will ignore a delimiter when it occurs between double quotes.

Such delimiter is considered to be part of the string. For example:

csv$ = "This,is,a,CSV,string,\"with,an\",escaped,delimiter"
SPLIT csv$ BY "," TO member$ SIZE x

One of the resulting members of the array will contain "with,an" because the comma is enclosed within double quotes.
BaCon will consider this a piece of text where the characters should be kept together. The behavior of skipping delimiters
within double quotes can be changed by setting or unsetting OPTION QUOTED. The JOIN statement can be used to merge
array elements back into one (delimited) string.

Instead of SPLIT, it is possible to use FOR..IN as well. This statement will subsequently return the parts of the delimited
text into a variable. Example:

FOR i$ IN "aa bb cc"

In this example, the variable 'i$' will subsequently have the value 'aa', 'bb' and 'cc' assigned. Also the FOR statement will
skip a delimiter occurring within double quotes. Note that the OPTION COLLAPSE will prevent empty results, both for
SPLIT and FOR.

The function EXPLODE$ will return a delimited string based on a specified amount of characters:

PRINT EXPLODE$("aabbcc", 1)

It is also possible to lookup a single member in a delimited string. This can be achieved with the TOKEN$ function. The
following returns the nth member of a space delimited string:

PRINT TOKEN$("a b c d \"e f\" g h i j", 5)

Note that this also works when some other delimiter is required. The delimiter must then be specified in the third optional
argument.

PRINT TOKEN$("1,2,3,4,5", 3, ",")

All the functions handling delimited strings accept such an optional argument. Alternatively, OPTION DELIM can define
the delimiter string which should be used in subsequent functions. The default value is a single space.

The ISTOKEN function can verify if a text occurs as a token in a delimited string:

t$ = "Kiev Amsterdam Lima Moscow Warschau Vienna Paris Madrid Bonn Bern Rome"
PRINT "Is this a token: ", ISTOKEN(t$, "Rome")

To obtain the first members from a delimited string, the function HEAD$ can be used:

PRINT "The first 2 elements: ", HEAD$(t$, 2)

Similarly, it is possible to get the last elements by using TAIL$:

PRINT "The last element: ", TAIL$(t$, 1)

The TAIL$ and HEAD$ functions have their complementary functions in LAST$ and FIRST$. The following example will
show all members of a delimited string except the first 2 members:

PRINT "All except the first 2 elements: ", LAST$(t$, 2)

The next code shows all members except the last:

PRINT "All except the last element: ", FIRST$(t$, 1)

It also is possible to obtain an excerpt using CUT$. The following piece of code will get the members from delimited string
't$' starting at position 2 and ending at position 4 inclusive:

PRINT "Some middle members: ", CUT$(t$, 2, 4)

Instead of fetching a member, BaCon also can change a member in a delimited string directly by using the CHANGE$
function:

result$ = CHANGE$("a,b,c,d,e,f,g,h,i,j", 5, "Ok", ",")

It is even possible to swap two members in a delimited string with the EXCHANGE$ function:

result$ = EXCHANGE$("a b c d e f g h i j", 5, 4)

The UNIQ$ function will return a delimited string where all members occur only once:

city$ = "Kiev Lima Moscow \"New York\" Warschau \"New York\" Rome"
PRINT "Unique member cities: ", UNIQ$(city$)

To add more members to a delimited string, use APPEND$:

t$ = APPEND$(t$, 2, "Santiago")

And to delete a member from a delimited string, use DEL$:

t$ = DEL$(t$, 3)

There are also functions to sort the members in a delimited string (SORT$) and to put them in reversed order (REV$). With
PROPER$ it is possible to capitalize the first letter of each individual element in a delimited string. The ROTATE$ function
rotates the items in a delimited string. Lastly, the DELIM$ function can change the actual delimiter in a string to some other
definition.

If a member still contains double quotes and escaped double quotes, then this can be flattened out by using the FLATTEN$
function. This function will remove double quotes and put escaping one level lower:

PRINT FLATTEN$("\"Hello \\\" world\"")

Lastly, the function AMOUNT will count the number of members in a delimited string:

nr = AMOUNT("a b c d e f g h i j")
PRINT AMOUNT("a,b,c,d,e,f,g,h,i,j", ",")

BaCon also has string functions available to handle delimited strings which use unbalanced delimiters. These are delimiters
which consist of different characters, or different sets of characters. Examples of such strings are HTML or XML strings.
They can be handled by functions like INBETWEEN$ and OUTBETWEEN$ very easily. For example, to obtain the title of
a website from an HTML definition:

PRINT INBETWEEN$("<html><head><title>Website</title></head>", "<title>",
"</title>")

By default, INBETWEEN$ will perform a non-greedy match, but the fourth optional argument can be set to specify a
greedy match.

Similarly, the OUTBETWEEN$ function will return everything but the matched substring, effectively cutting out a
substring based on unbalanced delimiters.

Regular expressions
BaCon can digest POSIX compliant regular expressions when using the REGEX function or the string functions
EXTRACT$ and REPLACE$. For this, BaCon relies on the standard libc implementation. However, it is possible to define
a different regular expression engine with the PRAGMA statement.

For example, to specify the very fast NFA based regular expression library TRE, the following line must be added at the top
of the program:

PRAGMA RE tre

This will include the header file from the TRE library and will link against its shared object. Of course, the system needs to
have the required files from the TRE library installed.

BaCon will add the default locations of all necessary files to the compile flags. In case these files are kept at a different
location, it is possible to define this explicitly as well:

PRAGMA RE tre INCLUDE <tre/regex.h> LDFLAGS -ltre

Next to the TRE library, also the Oniguruma library can be specified:

PRAGMA RE onig

When specifying the required files:

PRAGMA RE onig INCLUDE <onigposix.h> LDFLAGS -lonig

Also the famous PCRE library is supported:

PRAGMA RE pcre

The full definition looks like:

PRAGMA RE pcre INCLUDE <pcreposix.h> LDFLAGS -lpcreposix

Basically, any regular expression library with a functional POSIX interface can be specified. This allows a lot of flexibility
when certain features for regular expression parsing are required. The libraries TRE, Oniguruma and PCRE do not need a

further INCLUDE or LDFLAGS specification if their development files have their default names and reside at their default
location.

Error trapping, error catching and debugging
BaCon can distinguish between 4 types of errors.

1. System errors. These relate to the environment in which BaCon runs.

2. Syntax errors. These are detected during the conversion process.

3. Compiler errors. These are generated by the C compiler and passed on to BaCon.

4. Runtime errors. These can occur during execution of the program.

When an error occurs, the default behaviour of a BaCon program is to stop. Only in case of runtime errors, it is possible to
intercept the error with CATCH. This allows to proceed with a self-defined error handling function. This is especially
convenient when creating GUI applications, as runtime errors by default appear on the Unix command prompt. To prevent
BaCon detecting runtime errors altogether, use TRAP SYSTEM.

The reserved ERROR variable contains the number of the last error occurred. A full list of error numbers can be found in
appendix A. With the ERR$ function a human readable text for the error number can be retrieved programmatically.

Next to these options, the statement TRACE ON can set the program in such a way that it is executed at each keystroke,
step-by-step. This way it is possible to spot the location where the problem occurs. The ESC-key will then exit the program.
To switch of trace mode within a program, use TRACE OFF.

Also the STOP statement can be useful in debugging. This will interrupt the execution of the program and return to the Unix
command prompt, allowing intermediate checks. By using the Unix 'fg' command, or by sending the CONT signal to the
PID of the program, execution can be resumed.

Notes on transcompiling
The process of translating a programming language into another language, and then compiling it, is also known as
transcompiling. BaCon is a Basic to C translator, or a transcompiler, or transpiler.

When using BaCon, three stages can be distinguished:

1. conversion time

2. compilation time

3. runtime

It is important to realize that BaCon commands can function in all these stages. Examples of statements which have impact
the on conversion stage are INCLUDE, RELATE, USEC, USEH, WITH and some of the OPTION arguments. These
statements instruct BaCon about the way the Basic code should be converted.

A statement impacting the compilation stage is PRAGMA. With this statement it is possible to influence the behavior of the
compiler.

Most other BaCon statements are effective during runtime. These form the actual program being executed.

It should be clear that the aforementioned stages cannot be mixed. For example, it is not possible to define the argument for
INCLUDE in a string variable, as the INCLUDE statement is effective during conversion time, while variables are used
during runtime.

Note that except for system errors, the logic of the error messages basically follows the same structure: there are syntax
errors (conversion time), compiler errors and runtime errors. The system errors relate to the possibility of using BaCon
itself.

Overview of BaCon statements and functions
ABS
ABS(x)

Type: function

Returns the absolute value of x. This is the value of x without sign. Example without and with ABS, where the latter always
will produce a positive output:

PRINT x-y
PRINT ABS(x-y)

ACOS
ACOS(x)

Type: function

Returns the calculated arc cosine of x, where x is a value in radians.

ADDRESS
ADDRESS(x)

Type: function

Returns the memory address of a variable or function. The ADDRESS function can be used when passing pointers to
imported C functions (see IMPORT).

ALARM
ALARM <sub>, <time>

Type: statement

Sets a SUB to be executed in <time> milliseconds. The value '0' will cancel an alarm. The alarm will interrupt any action
the BaCon program currently is performing; an alarm always has priority.

After the sub is executed, the program will continue the operation it was doing when the alarm occurred. Example:

SUB dinner
 PRINT "Dinner time!"
END SUB
ALARM dinner, 5000

ALIAS
ALIAS <function> TO <alias>

Type: statement

Defines an alias to an existing function or an imported function. Aliases cannot be created for statements or operators.
Example:

ALIAS "DEC" TO "ConvertToDecimal"
PRINT ConvertToDecimal("AB1E")

ALIGN$
ALIGN$(string$, width, type [,indent])

Type: function

Aligns a multi-line <string$> over a maximum of <width> characters. The <type> indicates the kind of alignment to apply:
0 = left alignment, 1 = right alignment, 2 means center alignment, and 3 means fill or justify.

The alignment is applied in three stages. First, if the original text contains newline characters (0x0a), then these are replaced
with a single space. However, empty lines (double new lines) are preserved, as well as all other special characters, like a
space, tab, carriage return, non breaking space or a form feed. Therefore, in some cases, it may be necessary to remove any
special characters before using ALIGN$.

The second stage will try to find the best spot where to replace the space character for a new line character (0x0a). This
should be done within the given <width>. If there are multiple spaces then these are preserved. If OPTION COLLAPSE

was set to 'TRUE' then ALIGN$ will automatically delete redundant spaces.

The third stage will apply the chosen type of alignment. In case type is 0, 1 or 2, the lines in the final result are padded with
a single space character. In case type is 3, additional spaces are added equally in between the words of a line. Note that the
ALIGN$ function will not hyphenate words. Lines are being cut at a white space as much as possible. If a word does not fit
in the provided width by itself, then it will be wrapped around.

The optional argument <indent> will prepend additional space characters to each line. Example:

data$ = LOAD$("ascii_data.txt")
PRINT ALIGN$(data$, 40, 0)

When OPTION UTF8 is enabled, ALIGN$ can handle UTF8 strings correctly as well. The following example aligns a
UTF8 text from the Gutenberg project at two sides, each line not containing more than 50 characters, starting 10 positions
from the left:

OPTION COLLAPSE TRUE
OPTION UTF8 TRUE
text$ = LOAD$("Jane_Austen.txt")
PRINT ALIGN$(EXTRACT$(text$, CHR$(13)), 50, 3, 10)

AMOUNT
AMOUNT(string$ [,delimiter$])

Type: function

Returns the amount of tokens in a string split by delimiter$. The delimiter$ is optional. If it is omitted, then the definition
from OPTION DELIM is assumed. When specified, it may consist of multiple characters. If delimiter$ occurs between
double quotes in string$ then it is ignored. Example:

PRINT AMOUNT("a b c d \"e f\" g h i j")
PRINT AMOUNT("Dog Cat@@@Mouse Bird@@@123@@@456@@@789", "@@@")

AND
<expr> AND <expr>

Type: operator

Performs a logical 'and' between two expressions. For the binary 'and', use the '&' symbol. Example:

IF x = 0 AND y = 1 THEN PRINT "Hello"

APPEND
APPEND string$ TO filename$

Type: statement

Saves a string to disk in one step. If the file already exists, the data will be appended. See BAPPEND for appending binary
files in one step, and OPEN/WRITELN/READLN/CLOSE to read and write to a file using a filehandle in append mode.
Example:

APPEND result$ TO "/tmp/more_data.txt"

APPEND$
APPEND$(string$, pos, token$ [, delimiter$])

Type: function

Inserts <token$> into a delimited string$ split by delimiter$, at position <pos>. The delimiter$ is optional. If it is omitted,
then the definition from OPTION DELIM is assumed. When specified, it may consist of multiple characters.

If the <pos> parameter is 0, or is bigger than the amount of members in <string$>, then <token$> is appended. If the <pos>
parameter is negative, then <string$> will be returned unmodified.

If delimiter$ occurs between double quotes in string$, then it is ignored. This behavior can be changed by setting OPTION
QUOTED to FALSE. See DEL$ to delete members, and the chapter on delimited string functions for more information
about delimited strings. Example:

PRINT APPEND$("Rome Amsterdam Kiev Bern Paris London", 2, "Vienna")

ARGUMENT$
ARGUMENT$

Type: variable

Reserved variable containing name of the program and the arguments to the program. These are all separated by spaces.

If the CMDLINE function is used then this variable will contain optional arguments to command line functions.

ASC
ASC(char)

Type: function

Calculates the ASCII value of char (opposite of CHR$). See also UCS for UTF8 characters. Example:

PRINT ASC("x")

ASIN
ASIN(x)

Type: function

Returns the calculated arcsine of x, where x is a value in radians.

ATN
ATN(x)

Type: function

Returns the calculated arctangent of x, where x is a value in radians.

PRINT ATN(RAD(90))

BAPPEND
BAPPEND data TO filename$ SIZE amount

Type: statement

Saves a memory area with binary data to disk in one step. If the file already exists, the data will be appended. See APPEND
for appending text files in one step, and OPEN/PUTBYTE/GETBYTE/CLOSE to read and write to a file using a filehandle.
Example:

BAPPEND mem TO "/home/me/data" SIZE 10

BASENAME$
BASENAME$(filename$ [, flag])

Type: function

Returns the filename part of a given full filename. The optional [flag] indicates the part of the filename to be returned. The
values are: 0 = full filename (default), 1 = filename without extension and 2 = extension without filename. See also
DIRNAME$.

BIN$
BIN$(x)

Type: function

Calculates the binary value of x and returns a string with the result. The type size depends on the setting of OPTION
MEMTYPE. If MEMTYPE is set to char (default), then 8 bits are returned, if it is set to short then 16 bits are returned, etc.
See also DEC to convert back to decimal.

BIT
BIT(x)

Type: function

This function returns the value for a bit on position <x>. If x = 0 then it returns 1, if x = 1 then it returns 2, if x = 2 then it
returns 4 and so on.

PRINT BIT(x)

BLOAD
BLOAD(filename$)

Type: function

Performs a load into a memory address of a binary file. The memory address is returned when the loading was successful.
When done with the data, the memory should be freed with the FREE statement. See LOAD$ for loading text files in one
step, and OPEN/PUTBYTE/GETBYTE/CLOSE to read and write to a file using a file handle. Example:

binary = BLOAD("/home/me/myprog")
PRINT "First two bytes are: ", PEEK(binary), " ", PEEK(binary+1)
FREE binary

BREAK
BREAK [x]

Type: statement

Breaks out loop constructs like FOR/NEXT, WHILE/WEND, REPEAT/UNTIL or DOTIMES/DONE.

The optional parameter can define to which level the break should take place in case of nested loops. This parameter should
be an integer value higher than 0. See also CONTINUE to resume a loop.

BSAVE
BSAVE data TO filename$ SIZE amount

Type: statement

Saves a memory area with binary data to disk in one step. If the file already exists it is overwritten. The amount must be
specified in bytes. See SAVE for saving text files in one step, and OPEN/PUTBYTE/GETBYTE/CLOSE to read and write
to a file using a filehandle. Example:

BSAVE mem TO "/home/me/picture.png" SIZE 12123

BYTELEN
BYTELEN(x$, y [, z])

Type: function

Returns the actual byte length of UTF8 string x$ in case of y characters. This is a wrapper function which can be used in
combination with regular string functions, allowing correct processing of UTF8 string sequences. If the optional argument z
is set then start counting the byte length from the right size of string x$. Example:

str$ = "A © and a ® symbol"
PRINT LEFT$(str$, BYTELEN(str$, 3))
PRINT RIGHT$(str$, BYTELEN(str$, 8, TRUE))

CALL
CALL <sub name> [TO <var>]

Type: statement

Calls a subroutine if the sub is defined at the end of the program. With the optional TO also a function can be invoked which
stores the result value in <var>.

Example:

CALL fh2celsius(72) TO celsius
PRINT celsius

CATCH
CATCH GOTO <label> | RESET

Type: statement

Sets the error function where the program should jump to if runtime error checking is enabled with TRAP. For an example,
see the RESUME statement. Using the RESET argument restores the BaCon default error messages.

CEIL
CEIL(x)

Type: function

Rounds x up to the nearest integral (integer) number. This function always returns a float value. See also FLOOR and
ROUND.

CHANGE$
CHANGE$(string$, position, new$ [, delimiter$])

Type: function

Changes the token in string$, which is split by delimiter$, at position with new$. The delimiter$ is optional. If it is omitted,
then the definition from OPTION DELIM is assumed. When specified, it may consist of multiple characters. If delimiter$
occurs between double quotes in string$ then it is ignored. This behavior can be changed by setting OPTION QUOTED to
FALSE.

If the indicated position is outside a valid range, the original string is returned. Use the FLATTEN$ function to flatten out
the returned token. See also EXCHANGE$, TOKEN$ and SPLIT.

Examples:

PRINT CHANGE$("a b c d \"e f\" g h i j", 5, "OK")
PRINT CHANGE$("a,b,c,d,e,f,g,h,i,j", 4, "123", ",")

CHANGEDIR
CHANGEDIR <directory>

Type: statement

Changes the current working directory. Example:

CHANGEDIR "/tmp/mydir"

CHOP$
CHOP$(x$[, y$[, z]])

Type: function

Returns a string defined in x$ where on both sides <CR>, <NL>, <TAB> and <SPACE> have been removed. If other
characters need to be chopped then these can be specified in the optional y$. The optional parameter z defines where the
chopping must take place: 0 means on both sides, 1 means chop at the left and 2 means chop at the right. Examples:

PRINT CHOP$("bacon", "bn")
PRINT CHOP$(" hello world ", " ", 2)

CHR$
CHR$(x)

Type: function

Returns the character belonging to ASCII number x. This function does the opposite of ASC. The value for x must lie
between 0 and 255. See UTF8$ for Unicode values. Example:

LET a$ = CHR$(0x23)
PRINT a$

CLEAR
CLEAR

Type: statement

Clears the terminal screen. To be used with ANSI compliant terminals.

CLOSE
CLOSE FILE|DIRECTORY|NETWORK|SERVER|MEMORY|LIBRARY x[, y, z, ...]

Type: statement

Close file, directory, network, memory or library identified by handle. Multiple handles of the same type maybe used in a
comma separated list. Examples:

CLOSE FILE myfile
CLOSE MEMORY mem1, mem2, block
CLOSE LIBRARY "libgtk.so"

CMDLINE
CMDLINE(options$)

Type: function

Defines the possible command line options to the current program. The CMDLINE function returns the ASCII value of each
option until all provided options are parsed, in which case a '-1' is returned. In case an unknown option is encountered,
question mark is returned.

If <options$> contains a colon, then an extra argument to the option is required. Such argument will appear in the reserved
variable ARGUMENT$. Example where a program recognizes the options '-n' and '-f <arg>':

REPEAT
 option = CMDLINE("nf:")
 PRINT option
 PRINT ARGUMENT$
UNTIL option = -1

COLOR
COLOR <BG|FG> TO <BLACK|RED|GREEN|YELLOW|BLUE|MAGENTA|CYAN|WHITE>
COLOR <NORMAL|INTENSE|INVERSE|RESET>

Type: statement

Sets coloring for the output of characters in a terminal screen. For FG, the foreground color is set. With BG, the background
color is set. This only works with ANSI compliant terminals. Example:

COLOR FG TO GREEN
PRINT "This is green!"
COLOR RESET

Instead of color names, it is also possible to use their internal enumeration: black is 0, red is 1, green is 2, and so on. For BG
a 0 can be used, and for FG a 1. For example:

COLOR 1 TO 3
PRINT "This is yellow!"
COLOR RESET

COLUMNS
COLUMNS

Type: function

Returns the amount of columns in the current ANSI compliant terminal. See also ROWS. Example:

PRINT "X,Y: ", COLUMNS, "," , ROWS

CONCAT$
CONCAT$(x$, y$, ...)

Type: function

Returns the concatenation of x$, y$, ... The CONCAT$ function can accept an unlimited amount of arguments. Example:

txt$ = CONCAT$("Help this is ", name$, " carrying a strange ", thing$)

The CONCAT$ function is in place for compatibility reasons. Instead, BaCon also accepts the '&' symbol as infix string
concatenator. The following is the same example using '&':

txt$ = "Help this is " & name$ & " carrying a strange " & thing$

CONST
CONST <var> = <value> | <expr>

Type: statement

Assigns a value a to a label which cannot be changed during execution of the program. Consts are globally visible from the
point where they are defined. Example:

CONST WinSize = 100
CONST Screen = WinSize * 10 + 5

CONTINUE
CONTINUE [x]

Type: statement

Skips the remaining body of loop constructs like FOR/NEXT, WHILE/WEND, REPEAT/UNTIL or DOTIMES/DONE.

The optional parameter can define at which level a continue should be performed in case of nested loops, and should be an
integer value higher than 0.

COPY
COPY <from> TO <new> [SIZE length]

Type: statement

If <from> and <to> contain string values, then COPY copies a file to a new file. Example:

COPY "file.txt" TO "/tmp/new.txt"

If the SIZE keyword is present, then COPY assumes a memory copy. Example copying one array to another:

OPTION MEMTYPE long
DECLARE array[5], copy[5] TYPE long
array[0] = 15
array[1] = 24
array[2] = 33
array[3] = 42
array[4] = 51
COPY array TO copy SIZE 5

COS
COS(x)

Type: function

Returns the calculated COSINUS of x, where x is a value in radians. Example:

PRINT COS(RAD(45))

COUNT
COUNT(string, y)

Type: function

Returns the amount of times the ASCII or UCS value <y> occurs in <string>. Example:

PRINT COUNT("Hello world", ASC("l"))
OPTION UTF8 TRUE
PRINT COUNT(FILL$(5, 0x1F600), 0x1F600)

See also FILL$.

CR$
CR$

Type: variable

Represents the Carriage Return as a string.

CURDIR$
CURDIR$

Type: function

Returns the full path of the current working directory. See also ME$ or REALPATH$.

CURSOR
CURSOR <ON|OFF> | <FORWARD|BACK|UP|DOWN> [x]

Type: statement

Shows ("on") or hides ("off") the cursor in the current ANSI compliant terminal. Also, the cursor can be moved one

position in one of the four directions. Optionally, the amount of steps to move can be specified. Example:

PRINT "I am here"
CURSOR DOWN 2
PRINT "...now I am here"

CUT$
CUT$(string$, start, end [, delimiter$])

Type: function

Retrieves elements from a delimited string$ split by delimiter$, starting at <start> until <end> inclusive. The delimiter$ is
optional. If it is omitted, then the definition from OPTION DELIM is assumed. When specified, it may consist of multiple
characters.

If the <start> parameter is higher than <end>, the result will be the same as when the parameters were reversed.

If delimiter$ occurs between double quotes in string$, then it is ignored. This behavior can be changed by setting OPTION
QUOTED to FALSE. See also HEAD$ and TAIL$, and the chapter on delimited string functions for more information
about delimited strings. Example:

PRINT "Excerpt: ", CUT$("Rome Amsterdam Kiev Bern Paris London", 2, 4)

DATA
DATA <x, y, z, ...>

Type: statement

Defines data. The DATA statement always contains data which is globally visible. The data can be read with the READ
statement. If more data is read than available, then in case of numeric data a '0' will be retrieved, and in case of string data
an empty string. To start reading from the beginning again use RESTORE. Example:

DATA 1, 2, 3, 4, 5, 6
DATA 0.5, 0.7, 11, 0.15
DATA 1, "one", 2, "two", 3, "three", 4, "four"

DAY
DAY(x)

Type: function

Returns the day of the month (1-31) where x is amount of seconds since January 1, 1970. Example:

PRINT DAY(NOW)

DEC
DEC(x [,flag])

Type: function

Calculates the decimal value of x, where x should be passed as a string. The optional flag parameter determines the base to
convert from. If flag = 0 (default) then base is hexadecimal, and if flag = 1 then binary base is assumed. See also HEX$ and
BIN$ for hexadecimal and binary conversions. Example:

PRINT DEC("AB1E")
PRINT DEC("00010101", 1)

DECLARE
DECLARE <var>[,var2,var3,...] TYPE | ASSOC <c-type> | [ARRAY <size>]

Type: statement

This statement is similar to the GLOBAL statement and is available for compatibility reasons.

DECR
DECR <x>[, y]

Type: statement

Decreases variable <x> with 1. Optionally, the variable <x> can be decreased with <y>. Example:

x = 10
DECR x
PRINT x
DECR x, 3
PRINT x

DEF FN
DEF FN <label> [(args)] = <value> | <expr>

Type: statement

Assigns a value or expression to a label. Examples:

DEF FN func(x) = 3 * x
PRINT func(12)

DEF FN First$(x$) = LEFT$(x$, INSTR(x$, " ")-1)
PRINT First$("One Two Three")

DEG
DEG(x)

Type: function

Returns the degree value of x radians. Example:

PRINT DEG(PI)

DEL$
DEL$(string$, pos [, delimiter$])

Type: function

Deletes a member at position <pos> from a delimited string$ split by delimiter$. The delimiter$ is optional. If it is omitted,
then the definition from OPTION DELIM is assumed. When specified, it may consist of multiple characters.

If the <pos> parameter is smaller than 1 or bigger than the amount of members in <string$>, then the original string$ is
returned.

If delimiter$ occurs between double quotes in string$, then it is ignored. This behavior can be changed by setting OPTION
QUOTED to FALSE. See APPEND$ for adding members, and the chapter on delimited string functions for more
information about delimited strings. Example:

PRINT DEL$("Rome Amsterdam Kiev Bern Paris London", 2)

DELETE
DELETE <FILE|DIRECTORY|RECURSIVE> <x$>

Type: statement

Deletes a file with the FILE argument, or an empty directory when using the DIRECTORY argument. The RECURSIVE
argument can delete a directory containing files. It can also delete a complete directory tree. If an error occurs then this can
be captured by using the CATCH statement. Example:

DELETE FILE "/tmp/data.txt"
DELETE RECURSIVE "/usr/data/stuff"

DELIM$
DELIM$(string$, old$, new$)

Type: function

Changes the delimiter in string$ from old$ to new$. The new delimiter can be of different size compared to the old
delimiter.

If the old delimiter occurs between double quotes in string$, then it is ignored. This behavior can be changed by setting
OPTION QUOTED to FALSE. See also the chapter on delimited string functions for more information about delimited
strings. Example:

PRINT "Changed delimiter: ", DELIM$("f,q,a,c,i,b,r,t,e,d,z,", ",", "@@@")

DIRNAME$
DIRNAME$(filename$)

Type: function

Returns the pathname part of a given filename. See also REALPATH$ and BASENAME$.

DO
DO
 <body>
DONE

Type: statement

With DO/DONE a body of statements can be grouped together. This is useful in case of special compiler constructs like
pragmas. Example:

PRAGMA omp parallel sections
DO
 <...code...>
DONE

DOTIMES
DOTIMES x
 <body>
 [BREAK]|[CONTINUE]
DONE

Type: statement

With DOTIMES/DONE a body of statements can be repeated for a fixed amount of times without the need for a variable.
This is known as an anonymous loop. As with other loops, it can be prematurely exited by using BREAK. Also, part of the
body can be skipped by the use of the CONTINUE statement. See FOR/NEXT, WHILE/WEND and REPEAT/UNTIL for
setting up other types of loops. Example:

DOTIMES 10
 PRINT "Hello world"
DONE

EL$
EL$

Type: variable

The Erase Line variable clears the line from the current cursor position towards the end of the line.

END
END [value]

Type: statement

Exits a program. Optionally, a value can be provided which the program can return to the shell.

ENDFILE
ENDFILE(filehandle)

Type: function

Function to check if EOF on a file opened with <handle> is reached. If the end of a file is reached, the value '1' is returned,
else this function returns '0'. For an example, see the OPEN statement.

ENUM
ENUM
 item1, item2, item3
ENDENUM | END ENUM

Type: statement

Enumerates variables automatically. If no value is provided, the enumeration starts at 0 and will increase with integer
numbers. Example:

ENUM
 cat, dog, fish
END ENUM

It is also possible to explicitly define a value:

ENUM
 Monday=1, Tuesday=2, Wednesday=3
END ENUM

EPRINT
EPRINT [value] | [text] | [variable] | [expression] [FORMAT <format>[TO <variable>[SIZE <size>]] | [,] | [;]

Type: statement

Same as PRINT but uses 'stderror' as output.

EQ
x EQ y

Type: operator

Verifies if x is equal to y. To improve readability it is also possible to use IS instead. Both the EQ and IS operators only can
be used in case of numerical comparisons. Examples:

IF q EQ 5 THEN
 PRINT "q equals 5"
END IF

BaCon also accepts a single '=' symbol for comparison. Next to the single '=' also the double '==' can be used. These work
both for numerical comparisons and for string comparisons. See also NE.

IF b$ = "Hello" THEN
 PRINT "world"
END IF

EQUAL
EQUAL(x$, y$)

Type: function

Compares two strings, and returns 1 if x$ and y$ are equal, or 0 if x$ and y$ are not equal. Use OPTION COMPARE to
establish case insensitive comparison. Example:

IF EQUAL(a$, "Hello") THEN
 PRINT "world"
END IF

The EQUAL function is in place for compatibility reasons. The following code also works:

IF a$ = "Hello" THEN
 PRINT "world"
END IF

ERR$
ERR$(x)

Type: function

Returns the runtime error as a human readable string, identified by x. Example:

PRINT ERR$(ERROR)

ERROR
ERROR

Type: variable

This is a reserved variable, which contains the last error number. This variable may be reset during runtime.

EVEN
EVEN(x)

Type: function

Returns 1 if x is even, else returns 0.

EXCHANGE$
EXCHANGE$(haystack$, pos1, pos2 [, delimiter$])

Type: function

Exchanges the token at pos1 with the token at pos2 in haystack$ split by delimiter$. The delimiter$ is optional. If it is
omitted, then the definition from OPTION DELIM is assumed. When specified, it may consist of multiple characters. If
delimiter$ occurs between double quotes in haystack$ then it is ignored. This behavior can be changed by setting OPTION
QUOTED to FALSE.

If one of the indicated positions is outside a valid range, the original string is returned. Use the FLATTEN$ function to
flatten out the returned token. See also CHANGE$, TOKEN$ and SPLIT. Examples:

PRINT EXCHANGE$("a b c d \"e f\" g h i j", 8, 5)
PRINT EXCHANGE$("a,b,c,d,e,f,g,h,i,j", 4, 7, ",")

The next example code snippet sorts a delimited string. It uses the Bubble Sort algorithm:

t$ = "Kiev Amsterdam Lima Moscow Warschau Vienna Paris Madrid Bonn Bern Rome"
total = AMOUNT(t$)
WHILE total > 1

 FOR x = 1 TO total-1
 IF TOKEN$(t$, x) > TOKEN$(t$, x+1) THEN t$ = EXCHANGE$(t$, x, x+1)
 NEXT
 DECR total
WEND

Note that this is just an example to demonstrate the EXCHANGE$ function. Delimited strings can be sorted using the
native SORT$ function.

EXEC$
EXEC$(command$ [, stdin$[, out]])

Type: function

Executes an operating system command and returns the result to the BaCon program. The exit status of the executed
command itself is stored in the reserved variable RETVAL. Optionally, a second argument may be used to feed to STDIN.
Also optionally, a third argument can be specified to determine whether all output needs to be captured (0 = default), only
stdout (1) or only stderr (2). See SYSTEM to plainly execute a system command. Example:

result$ = EXEC$("ls -l")
result$ = EXEC$("bc", "123*456" & NL$ & "quit")
PRINT EXEC$("which ps", NULL, 2)

EXIT
EXIT

Type: statement

Exits a SUB or FUNCTION prematurely. Note that functions which are supposed to return a value will return a 0. String
functions will return an empty string.

Also note that it is allowed to write EXIT SUB or EXIT FUNCTION to improve code readability.

EXP
EXP(x)

Type: function

Returns e (base of natural logarithms) raised to the power of x.

EXPLODE$
EXPLODE$(string$, length [, delimiter$])

Type: function

Splits a string based on <length> characters and returns the result in a delimited string using the default delimiter. The
delimiter$ is optional. If it is omitted, then the definition from OPTION DELIM is assumed. When specified, it may consist
of multiple characters.

See also SPLIT to create an array based on a delimiter, and the chapter on delimited string functions for more information
about delimited strings. Example:

PRINT EXPLODE$("Amsterdam", 1)

EXTRACT$
EXTRACT$(x$, y$[, flag])

Type: function

Returns the string defined in <x$> from which the string mentioned in <y$> has been removed. The optional flag
determines if the <y$> should be taken as a regular expression where OPTION COMPARE establishes case insensitive

expression matching. See also REPLACE$.

Examples:

PRINT EXTRACT$("bacon program", "ra")
PRINT EXTRACT$(name$, "e")
PRINT EXTRACT$("a b c", " .* ", TRUE)

FALSE
FALSE

Type: variable

Represents and returns the value of '0'.

FILEEXISTS
FILEEXISTS(filename)

Type: function

Verifies if <filename> exists. If the file exists, this function returns 1, else it returns 0.

FILELEN
FILELEN(filename)

Type: function

Returns the size of a file identified by <filename>. If an error occurs this function returns '-1'. The ERR$ statement can be
used to find out the error if TRAP is set to LOCAL. Example:

length = FILELEN("/etc/passwd")

FILETIME
FILETIME(filename, type)

Type: function

Returns the timestamp of a file identified by <filename>, depending on the type of timestamp indicated in <type>. The type
can be one of the following: 0 = access time, 1 = modification time and 2 = status change time. Example:

stamp = FILETIME("/etc/hosts", 0)
PRINT "Last access: ", MONTH$(stamp), " ", DAY(stamp), ", ", YEAR(stamp)

FILETYPE
FILETYPE(filename)

Type: function

Returns the type of a file identified by <filename>. If an error occurs this function returns '0'. The ERR$ statement can be
used find out which error if TRAP is set to LOCAL. The following values may be returned:

Value Meaning

0 Error or undetermined

1 Regular file

2 Directory

3 Character device

4 Block device

5 Named pipe (FIFO)

6 Symbolic link

7 Socket

FILL$
FILL$(x, y)

Type: function

Returns an <x> amount of character <y>. The value for y must lie between 0 and 127 in ASCII mode, or between 0 and
1114111 (0x10FFFF) in case OPTION UTF8 is enabled. Example printing 10 times the character '@':

PRINT FILL$(10, ASC("@"))

Example printing 5 times a smiley character using unicode:

OPTION UTF8 TRUE
PRINT FILL$(5, 0x1F600)

See also COUNT to count the amount of times a character occurs in a string.

FIRST$
FIRST$(string$, amount [, delimiter$])

Type: function

Retrieves the remaining elements except the last <amount> from a delimited string$ split by delimiter$. The delimiter$ is
optional. If it is omitted, then the definition from OPTION DELIM is assumed. When specified, it may consist of multiple
characters.

If delimiter$ occurs between double quotes in string$, then it is ignored. This behavior can be changed by setting OPTION
QUOTED to FALSE.

See also TAIL$ to obtain elements counting from the end from the delimited string, and HEAD$ to obtain elements
counting from the start. Refer to the chapter on delimited string functions for more information about delimited strings.
Example:

PRINT "Remaining first members: ", FIRST$("Rome Amsterdam Kiev Bern Paris London",
2)

FLATTEN$
FLATTEN$(txt$ [, groupingchar$])

Type: function

Flattens out a string where the double quote symbol is used to group parts of the string together. Instead of the double quote
symbol a different character can be specified (optional). See also UNFLATTEN$ for the reverse operation. Examples:

PRINT FLATTEN$("\"Hello \\\"cruel\\\" world\"")
PRINT FLATTEN$(TOKEN$("Madrid,Kiev,\"New York\",Paris", 3, ","))
PRINT FLATTEN$("\'Hello world\'", "'")

FLOOR
FLOOR(x)

Type: function

Returns the rounded down value of x. Note that this function returns a float value. Refer to CEIL for rounding up.

FOR
FOR var = x TO|DOWNTO y [STEP z]
 <body>
 [BREAK]|[CONTINUE]
NEXT [var]

FOR var$ IN source$ [STEP delimiter$]
 <body>
 [BREAK]|[CONTINUE]
NEXT [var]

Type: statement

With FOR/NEXT a body of statements can be repeated a fixed amount of times.

In the first usage the variable x will be increased (to) or decreased (downto) until y with 1, unless a STEP is specified.
Example:

FOR x = 1 TO 10 STEP 0.5
 PRINT x
NEXT

In the second usage of FOR, the variable <var$> will be assigned the space delimited strings mentioned in source$. Instead
of a space delimiter, some other delimiter can be specified after the STEP keyword. The delimiter can consist of multiple
characters. If the <delimiter$> occurs in between double quotes, then it is skipped until FOR finds the next one. This
behavior can be changed by setting OPTION QUOTED to FALSE.

To prevent empty results, OPTION COLLAPSE can be set to TRUE (or 1). See also SPLIT to create an array of delimited
strings.

Example:

OPTION COLLAPSE TRUE
FOR x$ IN "Hello cruel world"
 PRINT x$
NEXT

FOR y$ IN "1,2,\"3,4\",5" STEP ","
 PRINT y$
NEXT

FORK
FORK
<child>
[ENDFORK [x]] | [END FORK [x]]

Type: function

Duplicate the current running program in memory. If the return value is 0, then we're in the child process. If the child
process needs an explicit exit then ENDFORK can be used.

If the return value > 0, then we are in the parent process; the actual value is the process ID of the spawned child.

If the return value < 0, then an error has occurred. See also REAP to detect and cleanup child processes which have ended,
or SIGNAL to prevent occurring zombie processes altogether. Example:

pid = FORK
IF pid = 0 THEN
 PRINT "I am the child, my PID is:", MYPID
 ENDFORK
ELIF pid > 0 THEN
 PRINT "I am the parent, pid of child:", pid
 REPEAT

 PRINT "Waiting for child to exit"
 SLEEP 50
 UNTIL REAP(pid)
ELSE
 PRINT "Error in fork"
ENDIF

FP
FP (x)

Type: function

Returns the memory address of a function with name 'x'. Example:

SUB Hello
 PRINT "Hello world"
END SUB

DECLARE (*func)() TYPE void
func = FP(Hello)
CALL (*func)()

FREE
FREE x[, y, z, ...]

Type: statement

Releases claimed memory (see also MEMORY). Multiple memory pointers can be provided. Example:

mem1 = MEMORY(500)
mem2 = MEMORY(100)
FREE mem1, mem2

This statement also can be used to delete individual members from associative arrays:

FREE array$("abc")

Lastly, it can delete all members of an associative array in one step:

FREE array$

FUNCTION
FUNCTION <name> ()|(STRING s, NUMBER i, FLOATING f, VAR v SIZE t) [TYPE <c-type>]
 <body>
 RETURN <x>
ENDFUNCTION | END FUNCTION

Type: statement

Defines a function. The variables within a function are visible globally, unless declared with the LOCAL statement. Instead
of the Bacon types STRING, NUMBER and FLOATING for the incoming arguments, also regular C-types can be used. If
no type is specified, then BaCon will recognize the argument type from the variable suffix. In case no suffix is available,
plain NUMBER type is assumed. With VAR a variable amount of arguments can be defined.

A FUNCTION always returns a value or a string, this should explicitly be specified with the RETURN statement. If the
FUNCTION returns a string, then the function name should end with a '$' to indicate a string by value. Function names also
may end with the '#' or '%' type suffix, to force a float or integer return type.

Furthermore, it is also possible to explicitly define the type of the return value using the TYPE keyword.

Examples:

FUNCTION fh2celsius(FLOATING fahrenheit) TYPE float
 PRINT "Calculating Celsius..."
 RETURN (fahrenheit-32)*5/9

END FUNCTION

FUNCTION Hello$(STRING name$)
 RETURN "Hello " & name$ & " !"
END FUNCTION

GETBYTE
GETBYTE <memory> FROM <handle> [CHUNK x] [SIZE y]

Type: statement

Retrieves binary data into a memory area from a either a file or a device identified by handle, with optional amount of <x>
bytes depending on OPTION MEMTYPE (default amount of bytes = 1). Also optionally, the actual amount retrieved can be
stored in variable <y>. Use PUTBYTE to write binary data.

Example program:

OPEN prog$ FOR READING AS myfile
 bin = MEMORY(100)
 GETBYTE bin FROM myfile SIZE 100
CLOSE FILE myfile

GETENVIRON$
GETENVIRON$(var$)

Type: function

Returns the value of the environment variable 'var$'. If the environment variable does not exist, this function returns an
empty string. See SETENVIRON to set an environment variable.

GETFILE
GETFILE <var> FROM <dirhandle>

Type: statement

Reads a file from an opened directory. Subsequent reads return the files in the directory. If there are no more files then an
empty string is returned. Refer to the OPEN statement for an example on usage.

GETKEY
GETKEY

Type: function

Returns a key from the keyboard without waiting for <RETURN>-key. See also INPUT and WAIT. Example:

PRINT "Press <escape> to exit now..."
key = GETKEY
IF key = 27 THEN
 END
END IF

GETLINE
GETLINE <variable$> FROM <handle>

Type: statement

Reads a line of data from a memory area identified by <handle> into a string variable. The memory area can be opened in
streaming mode using the the OPEN statement (see also the chapter on ramdisks and memory streams). A line of text is read
until the next newline character. Example:

GETLINE text$ FROM mymemory

See also PUTLINE to store lines of text into memory areas.

GETPEER$
GETPEER$(x)

Type: function

Gets the IP address and port of the remote host connected to a handle returned by OPEN FOR SERVER. Example:

OPEN "localhost:51000" FOR SERVER AS mynet
PRINT "Peer is: ", GETPEER$(mynet)
CLOSE SERVER mynet

GETX / GETY
GETX
GETY

Type: function

Returns the current x and y position of the cursor. An ANSI compliant terminal is required. See GOTOXY to set the cursor
position.

GLOBAL
GLOBAL <var>[,var2,var3,...] [TYPE]|ASSOC <c-type> | [ARRAY <size>]

Type: statement

Explicitly declares a variable to a C-type. The ASSOC keyword is used to declare associative arrays. This is always a global
declaration, meaning that variables declared with the GLOBAL keyword are visible in each part of the program. Use
LOCAL for local declarations.

The ARRAY keyword is used to define a dynamic array, which can be resized with REDIM at a later stage in the program.

Optionally, within a SUB or FUNCTION it is possible to use GLOBAL in combination with RECORD to define a record
variable which is visible globally.

GLOBAL x TYPE float
GLOBAL q$
GLOBAL new_array TYPE float ARRAY 100
GLOBAL name$ ARRAY 25

Multiple variables of the same type can be declared at once, using a comma separated list. In case of pointer variables the
asterisk should be attached to the variable name:

GLOBAL x, y, z TYPE int
GLOBAL *s, *t TYPE long

GOSUB
GOSUB <label>

Type: statement

Jumps to a label defined elsewhere in the program (see also the LABEL statement). When a RETURN is encountered, the
program will return to the last invoked GOSUB and continue from there. Note that a SUB or FUNCTION also limits the
scope of the GOSUB; it cannot jump outside. Example:

PRINT "Where are you?"
GOSUB there
PRINT "Finished."
END
LABEL there
 PRINT "In a submarine!"

 RETURN

GOTO
GOTO <label>

Type: statement

Jumps to a label defined elsewhere in the program. Note that a SUB or FUNCTION limits the scope of the GOTO; it cannot
jump outside. See also the LABEL statement.

GOTOXY
GOTOXY x, y

Type: statement

Puts cursor to position x,y where 1,1 is the upper left of the terminal screen. An ANSI compliant terminal is required.
Example:

CLEAR
FOR x = 5 TO 10
 GOTOXY x, x
 PRINT "Hello world"
NEXT
GOTOXY 1, 12

HEAD$
HEAD$(string$, amount [, delimiter$])

Type: function

Retrieves the first <amount> elements from a delimited string$ split by delimiter$. The delimiter$ is optional. If it is
omitted, then the definition from OPTION DELIM is assumed. When specified, it may consist of multiple characters.

If delimiter$ occurs between double quotes in string$, then it is ignored. This behavior can be changed by setting OPTION
QUOTED to FALSE.

See also LAST$ to obtain the remaining elements, and TAIL$ to obtain elements counting from the end of the delimited
string. Refer to the chapter on delimited string functions for more information about delimited strings. Example:

PRINT "First 2 members: ", HEAD$("Rome Amsterdam Kiev Bern Paris London", 2)

HEX$
HEX$(x)

Type: function

Calculates the hexadecimal value of x. Returns a string with the result. See also DEC to convert back to decimal.

HOST$
HOST$(name$)

Type: function

When name$ contains a hostname this function returns the corresponding IP address. If name$ contains an IP address the
corresponding hostname is returned. If the name or IP address cannot be resolved an error is generated. Examples:

PRINT HOST$("www.google.com")
PRINT HOST$("127.0.0.1")

HOSTNAME$
HOSTNAME$()

Type: function

Retrieves the actual hostname of the current system where the program is running. Example:

PRINT "My hostname is: ", HOSTNAME$

HOUR
HOUR(x)

Type: function

Returns the hour (0-23) where x is the amount of seconds since January 1, 1970.

IF
IF <expression> THEN
 <body>
[ELIF]
 <body>
[ELSE]
 [body]
ENDIF | END IF | FI

Type: statement

Execute <body> if <expression> is true. If <expression> is not true then run the optional ELSE body. Multiple IF's can be
written with ELIF. The IF construction should end with ENDIF or END IF or FI. Example:

a = 0
IF a > 10 THEN
 PRINT "This is strange:"
 PRINT "a is bigger than 10"
ELSE
 PRINT "a is smaller than 10"
END IF

The IF statement also allows comparing strings. The textual order is determined by the standard ASCII table. As a result,
capital letters, which occur in the ASCII table before the small letters, are considered to be 'smaller' than regular letters.

name$ = "BaCon"
IF name$ > "basic" THEN
 PRINT "Not printed"
ELSE
 PRINT "This is correct!"
END IF

Equations allow the BETWEEN operator both for numbers and strings:

IF "c" BETWEEN "basic"; "pascal" THEN PRINT "This is C"

If only one function or statement has to be executed, then the if-statement also can be used without a body. For example:

IF age > 18 THEN PRINT "You are an adult"
ELSE INPUT "Your age: ", age

It is not allowed to mix an IF without a body and an ELSE which contains a body, or v.v. For example, the following is not
allowed:

IF year > 1969 THEN PRINT "You are younger"
ELSE
 PRINT "You are older"
ENDIF

IIF / IIF$
IIF(expression, true, false)
IIF$(expression, true, false)

Type: function

The inline IF behaves similar to a regular IF, except that it is used as a function. The first argument contains the expression
to be evaluated, the second argument will be returned when the expression is true, and the last will be returned when the
expression is false.

The inline IF function also allows comparing strings. The textual order is determined by the standard ASCII table. As a
result, capital letters, which occur in the ASCII table before the small letters, are considered to be 'smaller' than regular
letters.

If the returned values are numeric, a plain IIF must be used. If strings are returned, then IIF$ should be used. Examples:

nr = IIF(1 <> 2, 10, 20)
answer$ = IIF$(2 + 2 = 5, "Correct", "Wrong")
PRINT IIF$(a$ = "B", "Yes it is", "No it isn't")
PRINT IIF(x BETWEEN y;z, 1, -1)

IMPORT
IMPORT <function[(type arg1, type arg2, ...)]> FROM <library> TYPE <type> [ALIAS word]

Type: statement

Imports a function from a C library defining the type of return value. Optionally, the type of arguments can be specified.
Also optionally it is possible to define an alias under which the imported function will be known to BaCon.

When the library name is 'NULL', a function will be imported from the program itself. In such situation, the ALIAS
keyword is obligatory. Note that the program must be compiled with a linker flag like '-export-dynamic' (GCC) or '-
rdynamic' (TCC) to make the target function visible for IMPORT.

An imported library can also be closed afterwards by using CLOSE LIBRARY. This will unload any symbols from the
current program and release the library.

Examples:

IMPORT "ioctl" FROM "libc.so" TYPE int
IMPORT "gdk_draw_line(long, long, int, int, int, int)" FROM "libgdk-x11-2.0.so"
TYPE void
IMPORT "fork" FROM "libc.so" TYPE int ALIAS "FORK"
IMPORT "atan(double)" FROM "libm.so" TYPE double ALIAS "arctangens"
IMPORT "MyFunc(void)" FROM NULL TYPE int ALIAS "Othername"
CLOSE LIBRARY "libm.so"

INBETWEEN$
INBETWEEN$(haystack$, lm$, rm$ [,greedy])

Type: function

This function returns a substring from haystack$, delimited by lm$ on the left and rm$ on the right. The delimiters may
contain multiple characters. They are not part of the returned result. The greedy parameter is optional and specifies if rm$
should indicate the most right match. See also OUTBETWEEN$. Example usage:

PRINT INBETWEEN$("Lorem ipsum dolor sit amet", "ipsum", "sit")
PRINT INBETWEEN$("<p>Chapter one.</p>", "<p>", "</p>")
a$ = INBETWEEN$("yes no 123 yes 456 yes", "no", "yes", TRUE)

INCLUDE
INCLUDE <filename>[, func1, func2, ...]

Type: statement

Adds a external BaCon file to current program. Includes may be nested. The file name extension may be omitted.
Optionally, it is possible to specify which particular functions in the included file need to be added. Examples:

INCLUDE "beep.bac"
INCLUDE "canvas"
INCLUDE "hug", INIT, WINDOW, DISPLAY

INCR
INCR <x>[, y]

Type: statement

Increases variable <x> with 1. Optionally, the variable <x> can be increased with <y>.

INPUT
INPUT [text[, ... ,]<variable[$]>

Type: statement

Gets input from the user. If the variable ends with a '$' then the input is considered to be a string. Otherwise it will be treated
as numeric. Example:

INPUT a$
PRINT "You entered the following: ", a$

The input-statement also can print text. The input variable always must be present at the end of the line. Example:

INPUT "What is your age? ", age
PRINT "You probably were born in ", YEAR(NOW) - age

The INPUT statement by nature is a blocking statement. However, it can be used for capturing data from STDIN as well.
The INPUT statement will return immediately if STDIN has no data. In such situation, a string variable will be empty and a
numeric variable will be 0.

Note that INPUT always will chop off a trailing newline from string variables, if there is any.

The OPTION INPUT parameter can be used to define where INPUT should cut off the incoming stream from STDIN.

INSERT$
INSERT$(source$, x, string$)

Type: function

Inserts the string$ into source$ at position <x>. The letters in source$ starting from position <x> are pushed forward. If x
<= 1 then string$ is prepended to source$. If position > length of source$ then string$ is appended to source$. Example:

PRINT INSERT$("Hello world", 7, "cruel ")

INSTR
INSTR(haystack$, needle$ [,z])

Type: function

Returns the position where needle$ begins in haystack$, optionally starting at position z. If not found then this function
returns the value '0'. See also TALLY to count the occurrences of needle$.

position = INSTR("Hello world", "wo")
PRINT INSTR("Don't take my wallet", "all", 10)

INSTRREV
INSTRREV(haystack$, needle$ [,z])

Type: function

Returns the position where needle$ begins in haystack$, but start searching from the end of haystack$, optionally at position
z also counting from the end. The result is counted from the beginning of haystack$. If not found then this function returns
the value '0'.

See also OPTION STARTPOINT to return the result counted from the end of haystack$.

INTL$
INTL$(x$)

Type: function

Specifies that <x$> should be taken into account for internationalization. All strings which are surrounded by INTL$ will be
candidate for the template catalog file. This file is created when BaCon is executed with the '-x' switch. See also the chapter
about internationalization and the TEXTDOMAIN statement.

ISASCII
ISASCII(string$)

Type: function

Returns TRUE (1) if <string$> only contains ASCII data. If not, FALSE (0) is returned. Example:

PRINT ISASCII("hello world")

ISFALSE
ISFALSE(x)

Type: function

Verifies if x is equal to 0.

ISKEY
ISKEY(array, string$)

Type: function

Returns TRUE (1) if <string$> is defined as a key in the associative <array>. If not, FALSE (0) is returned. See also
NRKEYS. Example:

DECLARE array ASSOC int
array("hello") = 25
array("world") = 30
PRINT ISKEY(array, "goodbye")
PRINT ISKEY(array, "world")

ISTOKEN
ISTOKEN(string$, token$ [, delimiter$])

Type: function

Verifies if the <token$> occurs in a delimited <string$>. The delimiter$ is optional. If it is omitted, then the definition from
OPTION DELIM is assumed. When specified, it may consist of multiple characters.

If delimiter$ occurs between double quotes in string$, then it is ignored. This behavior can be changed by setting OPTION
QUOTED to FALSE.

If token$ was found in string$, then this function returns the actual position of the token in the delimited string, counting
from the left. Otherwise it returns '0'. See also TOKEN$. Example:

string$ = "Kiev Amsterdam Lima Moscow Warschau Vienna Paris Madrid Bonn Bern Rome"
PRINT ISTOKEN(string$, "Paris")

ISTRUE
ISTRUE(x)

Type: function

Verifies if x is not equal to 0.

JOIN
JOIN <array> [BY <sub>] TO <string> SIZE <variable>

Type: statement

This statement can join elements of a one dimensional string array into a single string. The optional argument in BY defines
the delimiter string in between the array elements. If BY is omitted, then no delimiter is put in between the concatenated
array elements. The result is stored in the <string> argument mentioned by the TO keyword. The total amount of array
elements to be joined must be defined in SIZE. See also SPLIT to do the opposite. Example:

DECLARE name$[3]
name$[0] = "Hello"
name$[1] = "cruel"
name$[2] = "world"
JOIN name$ BY " " TO result$ SIZE 3

LABEL
LABEL <label>

Type: statement

Defines a label which can be jumped to by using a GOTO, GOSUB or CATCH GOTO statement. Also RESTORE may
refer to a label. A label may not contain spaces.

LAST$
LAST$(string$, amount [, delimiter$])

Type: function

Retrieves the remaining elements except the first <amount> from a delimited string$ split by delimiter$. The delimiter$ is
optional. If it is omitted, then the definition from OPTION DELIM is assumed. When specified, it may consist of multiple
characters.

If delimiter$ occurs between double quotes in string$, then it is ignored. This behavior can be changed by setting OPTION
QUOTED to FALSE. See also HEAD$ to get the first element(s), and the chapter on delimited string functions for more
information about delimited strings. Example:

PRINT "Remaining members: ", LAST$("Rome Amsterdam Kiev Bern Paris London", 1)

LCASE$
LCASE$(x$)

Type: function

Converts x$ to lowercase characters and returns the result. Example:

PRINT LCASE$("ThIs Is All LoWeRcAsE")

LEFT$
LEFT$(x$, y)

Type: function

Returns y characters from the left of x$.

LEN
LEN(x$)

Type: function

Returns the length of ASCII string x$. If OPTION UTF8 is enabled, then the LEN function will return the length of UTF8
formatted strings correctly as well. See also ULEN.

LET
LET <var> = <value> | <expr>

Type: statement

Assigns a value or result from an expression to a variable. The LET statement may be omitted. Example:

LET a = 10

LINENO
LINENO

Type: variable

Contains the current line number of the program. This variable mainly is used for debugging purposes.

LOAD$
LOAD$(filename$)

Type: function

Returns a string with the content of the specified text file in one step. See BLOAD for loading binary files in one step, and
OPEN/WRITELN/READLN/CLOSE to read and write to a file using a filehandle. Example:

content$ = LOAD$("bacon.bac")
PRINT "Content of 'bacon.bac': ", content$

LOCAL
LOCAL <var>[,var2,var3,...] [TYPE <c-type>] [ASSOC <c-type>] [ARRAY <size>] [STATIC]

Type: statement

This statement only has sense within functions, subroutines or records. It defines a local variable <var> with C type <type>
which will not be visible to other functions, subroutines or records, nor to the main program.

If the TYPE keyword is omitted then variables are assumed to be of 'long' type. If TYPE is omitted and the variablename
ends with a '$' then the variable will be a string.

The ARRAY keyword is used to define a dynamic array, which can be resized with REDIM at a later stage in the program.

Examples:

LOCAL tt TYPE int
LOCAL q$
LOCAL new_array TYPE float ARRAY 100
LOCAL name$ ARRAY 25

LOCAL key$ ASSOC STRING

Multiple variables of the same type can be declared at once, using a comma separated list. In case of pointer variables the
asterisk should be attached to the variable name:

LOCAL x, y, z TYPE int

LOCAL *s, *t TYPE long

LOG
LOG(x)

Type: function

Returns the natural logarithm of x.

LOOKUP
LOOKUP <assoc> TO <array> SIZE <variable> [STATIC]

Type: statement

Retrieves all index names created in an associative array. The results are stored in <array>. As it sometimes is unknown how
many elements this resulting array will contain, the array should not be declared explicitly. Instead, LOOKUP will declare
the result array dynamically.

If LOOKUP is being used in a function or sub, then <array> will have a local scope. Else <array> will be visible globally,
and can be accessed within all functions and subs.

The total amount of elements created in this array is stored in <variable>. This variable can be declared explicitly using
LOCAL or GLOBAL. See also OBTAIN$ to store index names into a delimited string. Example:

LOOKUP mortal TO men$ SIZE amount
FOR x = 0 TO amount - 1
 PRINT men$[x]
NEXT

The optional STATIC keyword allows the created <array> to be returned from a function.

MAKEDIR
MAKEDIR <directory>

Type: statement

Creates an empty directory. Parent directories are created implicitly. If the directory already exists then it is recreated. Errors
like write permissions, disk quota issues and so on can be captured with CATCH. Example:

MAKEDIR "/tmp/mydir/is/here"

MAP
MAP <array1> [,array2, ...array<n>] BY <function> TO <array> SIZE <const|variable> [STATIC]

Type: statement

Performs a mapping of a function towards one or more arrays, storing the results in another array. All arrays shall have one
dimension. The target array can be declared previously with the DECLARE or LOCAL statement. Using LOCAL in
combination with the optional STATIC keyword, the array is created so it can be returned from a function. However, if there
is no explicit previous declaration, then the MAP statement will declare the target array implicitly. The STATIC keyword
can be used here as well.

When the target array is declared implicitly, the following logic applies: if MAP is being used in a function or sub, then the
target <array> will have a local scope. Else <array> will be visible globally, and can be accessed within all functions and
subs.

The <function> can either be defined by DEF FN, or it can point to a regular function. Only the function name should be
provided, not the arguments. Note that the amount of arguments must be the same as the amount of arrays to which the
<function> is mapped. Example:

DEF FN addition(x, y) = x+y
MAP array1, array2 BY addition TO result SIZE 5

In this example, the first 5 elements of array1 and array2 are used for the 'addition' function. The results are stored in the

array 'result'. See also SUM for adding members within the same array.

String arrays are supported as well:

word$ = "Hello world this is a program"
DEF FN func(x$) = LEN(x$)
SPLIT word$ TO letter$ SIZE total
MAP letter$ BY func TO new SIZE total

Here, each word is put into an array, after which the length of the individual words is being calculated. The results are then
stored in another array.

MAX / MAX$
MAX(x, y)
MAX$(x$, y$)

Type: function

Returns the maximum value of two numbers or two strings. In case of strings, this function will follow the ASCII table to
determine the 'maximum' string. This means that small letters, which occur in the ASCII table after capital letters, will have
priority. Example:

PRINT MAX(3, PI)
PRINT MAX$("hello", "HELLO")

MAXNUM
MAXNUM(type)

Type: function

This function returns the maximum value possible for a certain type. Example:

PRINT MAXNUM(short)
PRINT MAXNUM(long) FORMAT "%ld\n"

MAXRANDOM
MAXRANDOM

Type: variable

Reserved variable which contains the maximum value RND can generate. The actual value may vary on different operating
systems.

ME$
ME$

Type: function

Returns the full path of the current active program. See also CURDIR$ and REALPATH$.

MEMCHECK
MEMCHECK(memory address)

Type: function

Verifies if <memory address> is accessible, in which case a '1' is returned. If not, this function returns a '0'. Example:

IF MEMCHECK(mem) THEN POKE mem, 1234

MEMORY
MEMORY(x)

Type: function

Claims memory of x size, returning a handle to the address where the memory block resides. Use FREE to release the
memory. Note that OPTION MEMTYPE can influence the type of memory created. The following example creates a
memory area to store integers:

OPTION MEMTYPE int
area = MEMORY(100)

Effectively, this will provide a memory area of 100 times the length of an integer.

MEMREWIND
MEMREWIND <handle>

Type: statement

Returns to the beginning of a memory area opened with <handle>.

MEMTELL
MEMTELL(handle)

Type: function

Returns the current position in the memory area opened with <handle>.

MID$
MID$(x$, y, [z])

Type: function

Returns z characters starting at position y in x$. If y is a negative number, then start counting the position from the end of
x$. The parameter 'z' is optional. When this parameter is 0, negative or omitted, then everything from position 'y' until the
end of the string is returned. Example:

txt$ = "Hello cruel world"
PRINT MID$(txt$, 7, 5)
PRINT MID$(txt$, -11)
PRINT MID$(txt$, 12, -1)

MIN / MIN$
MIN(x, y)
MIN$(x$, y$)

Type: function

Returns the minimum value of two numbers or two strings. In case of strings, this function will follow the ASCII table to
determine the 'minimum' string. This means that capital letters, which occur in the ASCII table before the small letters, will
have priority. Example:

PRINT MIN(3, PI)
PRINT MIN$("hello", "HELLO")

MINUTE
MINUTE(x)

Type: function

Returns the minute (0-59) where x is amount of seconds since January 1, 1970.

MOD
MOD(x, y)

Type: function

Returns the modulo of x divided by y.

MONTH
MONTH(x)

Type: function

Returns the month (1-12) in a year, where x is the amount of seconds since January 1, 1970.

MONTH$
MONTH$(x)

Type: function

Returns the month of the year as string in the system's locale ("January", "February", etc), where x is the amount of seconds
since January 1, 1970.

MYPID
MYPID

Type: function

Returns the process ID of the current running program.

NE
x NE y

Type: operator

Checks if x and y are not equal. Instead, ISNOT can be used as well to improve code readability. The NE and ISNOT
operators only work for numerical comparisons.

Next to these, BaCon also accepts the '!=' and '<>' constructs for comparison. These work both for numerical and string
comparisons. See also EQ.

NL$
NL$

Type: variable

Represents the New Line as a string.

NNTL$
NNTL$(x$, y$, value)

Type: function

Specifies that <x$> should be taken into account for internationalization. This is a variation to INTL$. With NNTL$
singularities and multitudes can be specified, which are candidate for the template catalog file. This file is created when
BaCon is executed with the '-x' switch. See also TEXTDOMAIN and INTL$ and the chapter on internationalization.
Example:

LET x = 2

PRINT x FORMAT NNTL$("There is %ld green bottle\n", "There are %ld green
bottles\n", x)

NOT
NOT(x)

Type: function

Returns the negation of x.

NOW
NOW

Type: function

Returns the amount of seconds since January 1, 1970.

NRKEYS
NRKEYS(array)

Type: function

Returns the amount of index names (keys) in the associative <array>. See ISKEY to find out if a key exists in an associative
array. Example:

DECLARE array ASSOC int
array("hello") = 25
array("world") = 30
PRINT NRKEYS(array)

OBTAIN$
OBTAIN$(assoc$ [,delimiter$])

Type: function

Retrieves all index names from an associative array and returns a delimited string split by delimiter$. Multiple indexes in
the same element are returned space separated. The delimiter$ is optional. If it is omitted, then the definition from OPTION
DELIM is assumed. When specified, it may consist of multiple characters.

See the chapter on delimited string functions for more information about delimited strings. See also LOOKUP to store index
names from an associative array into a regular array. Example:

PRINT OBTAIN$(AssocArray)

ODD
ODD(x)

Type: Function

Returns 1 if x is odd, else returns 0.

ON
ON x GOTO label1 [,label2[, label<x>]]

Type: statement

Jump to a label based on the value of x. When x is 1 then the first label is chosen, when x is 2 the second label and so on.
When x has a higher value than the available labels this statement is ignored. Example:

ON x GOTO a, b

PRINT "No label found"
END
LABEL a
 PRINT "a"
 END
LABEL b
 PRINT "b"
 END

OPEN
OPEN <file|dir|address> FOR READING|WRITING|APPENDING|READWRITE|DIRECTORY|NETWORK
[FROM address[:port]]|SERVER|MEMORY|DEVICE AS <handle>

Type: statement

When used with READING, WRITING, APPENDING or READWRITE, this statement opens a file assigning a handle to
it. The READING keyword opens a file for read-only, the WRITING for writing, APPENDING to append data and
READWRITE opens a file both for reading and writing. Example:

OPEN "data.txt" FOR READING AS myfile
WHILE NOT(ENDFILE(myfile)) DO
 READLN txt$ FROM myfile
 IF NOT(ENDFILE(myfile)) THEN
 PRINT txt$
 ENDIF
WEND
CLOSE FILE myfile

When used with DIRECTORY a directory is opened as a stream. Subsequent reads will return the files in the directory.
Example:

OPEN "." FOR DIRECTORY AS mydir
REPEAT
 GETFILE myfile$ FROM mydir
 PRINT "File found: ", myfile$
UNTIL ISFALSE(LEN(myfile$))
CLOSE DIRECTORY mydir

When used with NETWORK a network address is opened as a stream. Optionally, the source IP address and port can be
specified using FROM.

OPEN "www.google.com:80" FOR NETWORK AS mynet
SEND "GET / HTTP/1.1\r\nHost: www.google.com\r\n\r\n" TO mynet
REPEAT
 RECEIVE dat$ FROM mynet
 total$ = total$ & dat$
UNTIL ISFALSE(WAIT(mynet, 500))
PRINT total$
CLOSE NETWORK mynet

When used with SERVER the program starts as a server to accept incoming network connections. When invoked multiple
times in TCP mode using the same host and port, OPEN SERVER will not create a new socket, but accept another incoming
connection. Instead of specifying an IP address, also the Unix wildcard '*' can be used to listen to all interfaces. See also
OPTION NETWORK to set the network protocol.

OPEN "*:51000" FOR SERVER AS myserver
WHILE NOT(EQUAL(LEFT$(dat$, 4), "quit")) DO
 RECEIVE dat$ FROM myserver
 PRINT "Found: ", dat$
WEND
CLOSE SERVER myserver

When used with MEMORY a memory area can be used in streaming mode.

data = MEMORY(500)
OPEN data FOR MEMORY AS mem
PUTLINE "Hello cruel world" TO mem
MEMREWIND mem
GETLINE txt$ FROM mem
CLOSE MEMORY mem
PRINT txt$

When used with DEVICE, a file or device can be opened in any mode. The open mode can set by using OPTION DEVICE.
Use PUTBYTE or GETBYTE to write and retrieve data from the opened device.

OPEN "/dev/ttyUSB0" FOR DEVICE AS myserial
SETSERIAL myserial SPEED B38400
GETBYTE mem FROM myserial CHUNK 5 SIZE received
CLOSE DEVICE myserial

OPTION
OPTION <BASE x> | <COMPARE x> | <SOCKET x> | <NETWORK type [ttl]> | <MEMSTREAM x> |
<MEMTYPE type> | <COLLAPSE x> | <INTERNATIONAL x> | <STARTPOINT x> | <DEVICE x> | <PARSE x> |
<FRAMEWORK x> | <VARTYPE x> | <QUOTED x> | <DQ x> | <UTF8 x> | <DELIM x> | <BREAK x> | <INPUT
x>

Type: statement

Sets an option to define the behavior of the compiled BaCon program. It is recommended to use this statement in the
beginning of the program, to avoid unexpected results.

• The BASE argument determines the lower bound of arrays. By default the lower bound is set to 0. Note that this
setting also has impact on the array returned by the SPLIT and LOOKUP statements. It has no impact on arrays
which assign their values statically at the moment of declaration.

• The COMPARE argument defines if string comparisons in the IF and IIF/IIF$ statements and in the BETWEEN
operator and also in regular expressions with REPLACE$, EXTRACT$ and REGEX should be case sensitive (0)
or not (1). The default is case sensitive (0).

• The SOCKET argument defines the timeout for setting up a socket to an IP address. Default value is 5 seconds.

• The NETWORK argument defines the type of protocol: TCP, UDP, BROADCAST, MULTICAST or SCTP. When
MULTICAST is selected also an optional value for TTL can be specified. When SCTP is selected an optional value
for the amount of streams can be specified. Default setting for this option is: TCP. Default value for TTL is 1.
Default amount of SCTP streams is 1.

• The MEMSTREAM argument allows the handle created by the OPEN FOR MEMORY statement to be used as a
string variable (1). Default value is 0.

• The MEMTYPE argument defines the type of memory to be used by POKE, PEEK, MEMORY, RESIZE,
PUTBYTE, GETBYTE, COPY, ROL and ROR. Default value is 'char' (1 byte). Any valid C type can be used here,
for example 'float', 'unsigned int', 'long' etc.

• The COLLAPSE argument specifies if the results of the SPLIT and FOR..IN statements and of the delimited string
functions may contain empty results (0) in case the separator occurs as a sequence in the target string, or not (1).
Default value is 0.

• The INTERNATIONAL argument enables support for internationalization of strings. It sets the textdomain for
INTL$ and NNTL$ to the current filename. See also TEXTDOMAIN and the chapter on creating
internationalization files. The default value is 0.

• The STARTPOINT argument has impact on the way the INSTRREV function returns its results. When set to 1, the
result of the INSTRREV function is counted from the end of the string. Default value is 0 (counting from the
beginning of the string).

• The DEVICE argument determines the way a device or file is opened in the OPEN FOR DEVICE statement. By
default BaCon uses the following open mode: O_RDWR|O_NOCTTY|O_SYNC. Other common Unix open modes
are O_APPEND, O_ASYNC, O_CREAT, O_EXCL, O_NONBLOCK and O_TRUNC. Please refer to the open
manpage for more details on the open modes.

• The PARSE argument defines if BaCon should allow non-BaCon code. It can be used to embed foreign functions
from external C libraries. Use with care, as this option accepts any random piece of text. Errors only will popup
during compile time, which may be hard to troubleshoot. The default value is 1.

• The FRAMEWORK option is used in case of linking to MacOSX frameworks like Cocoa. This option allows
multiple frameworks separated by a comma. For example: PRAGMA FRAMEWORK COCOA.

• The VARTYPE option defines the default variable type in case of implicit declarations. The default value for this
option is: long.

• The QUOTED argument defines whether text delimiters appearing between double quotes should be skipped (1) or
not (0). The default is to skip delimiters between double quotes (1).

• The DQ argument defines the symbol for OPTION QUOTED. This is a numeric ASCII value. Default value is 34
(double quotes).

• The UTF8 argument enables all BaCon string functions to process text in UTF8 format correctly. The default is to
process text as ASCII (0).

• The DELIM argument defines the delimiter string when processing delimited strings. It always should be provided
as a static string literal. The default value is a single space " ".

• The BREAK argument prevents and disables the use of BREAK statements in generated C code. The default is to
allow BREAK statement (TRUE).

• The EXPLICIT argument enforces the declaration of all variables used in a program. The default value is 0
(FALSE), so no variable declaration is enforced.

• The INPUT argument defines where the stream of input characters from STDIN should be cut off. By default,
INPUT returns when a newline is encountered. The default value is "\n".

OR
x OR y

Type: operator

Performs a logical or between x and y. For the binary or, use the '|' symbol.

OS$
OS$

Type: function

Function which returns the name and machine of the current Operating System.

OUTBETWEEN$
OUTBETWEEN$(haystack$, lm$, rm$ [,greedy])

Type: function

This function returns haystack$ where the substring delimited by lm$ on the left and rm$ on the right is cut out. The
delimiters may contain multiple characters. They are not part of the returned result. The greedy parameter is optional and
specifies if rm$ should indicate the most right match. See also INSERT$ to insert a string and INBETWEEN$ to return the
delimited substring. Example usage:

PRINT OUTBETWEEN$("Lorem ipsum dolor sit amet", "ipsum", "sit")
a$ = OUTBETWEEN$("yes no 123 yes 456 yes", "no", "yes", TRUE)

PEEK
PEEK(x)

Type: function

Returns a value stored at memory address x. The type of the returned value can be determined with OPTION MEMTYPE.

PI
PI

Type: variable

Reserved variable containing the number for PI: 3.14159265358979323846.

POKE
POKE <x>, <y>

Type: statement

Stores a value <y> at memory addres <x>. Use PEEK to retrieve a value from a memory address. Use OPTION
MEMTYPE to determine the type of the value to store. Example:

OPTION MEMTYPE float
mem = MEMORY(500)
POKE mem, 32.123

POW
POW(x, y)

Type: function

Raise x to the power of y.

PRAGMA
PRAGMA <OPTIONS x> | <LDFLAGS x> | <COMPILER x> | <INCLUDE x> | <BACONLIB> | <RE x [INCLUDE
y] [LDFLAGS z]>

Type: statement

Instead of passing command line arguments to influence the behavior of the compiler, it is also possible to define these
arguments programmatically. Mostly these arguments are used when embedding variables or library dependent structures
into BaCon code. When no valid option to PRAGMA is provided, BaCon will translate to the plain compiler directive
'#pragma'. Example when SDL code is included in the BaCon program:

PRAGMA LDFLAGS SDL
PRAGMA INCLUDE SDL/SDL.h
Example when GTK2 code is included in the BaCon program:

PRAGMA LDFLAGS `pkg-config --libs gtk+-2.0`
PRAGMA INCLUDE gtk-2.0/gtk/gtk.h
PRAGMA COMPILER gcc
Example on passing optimization parameters to the compiler:

PRAGMA OPTIONS -O2 -s
Multiple arguments can be passed too:

PRAGMA LDFLAGS iup cd iupcd im
PRAGMA INCLUDE iup.h cd.h cdiup.h im.h im_image.h
Example forcing the recreation of the BaCon library:

PRAGMA BACONLIB
Example specifying a regular expression engine like PCRE (see the chapter on Regular Expressions for more details):

PRAGMA RE pcre INCLUDE <pcreposix.h> LDFLAGS -lpcreposix
Example using an OpenMP pragma definition:

PRAGMA omp parallel for private(x)

PRINT
PRINT [value] | [text] | [variable] | [expression] [FORMAT <format>][TO <variable> [SIZE <size>]] | [,] | [;]

Type: statement

Prints a numeric value, text, variable or result from expression to standard output. As with most BASICs, the PRINT
statement may be abbreviated using the '?' symbol. A semicolon at the end of the line prevents printing a newline. For
printing to stderr, see EPRINT. Examples:

PRINT "This line does ";
PRINT "end here: ";
PRINT linenr + 2

Multiple arguments maybe used but they must be separated with a comma. Examples:

PRINT "This is operating system: ", OS$
PRINT "Sum of 1 and 2 is: ", 1 + 2

The FORMAT argument is optional and can be used to specify different types in the PRINT argument. The syntax of
FORMAT is similar to the printf argument in C. Example:

PRINT "My age is ", 42, " years which is ", 12 + 30 FORMAT "%s%d%s%d\n"

The result also can be printed to a string variable. This can also be done in combination with FORMAT. To achieve this, use
the keyword TO. Optionally, the total amount of resulting characters can be provided with the SIZE keyword. If no size is
given, BaCon will use its default internal buffer size (512 characters).

PRINT "Hello cruel world" TO hello$
PRINT "Hello" & "cruel" & "world" TO hello$ SIZE 32

t = NOW + 300
PRINT HOUR(t), MINUTE(t), SECOND(t) FORMAT "%.2ld%.2ld%.2ld" TO time$
PRINT MONTH$(t) FORMAT "%s" TO current$ SIZE 15

PROPER$
PROPER$(string$ [,delimiter$])

Type: function

Capitalizes the first letter of all elements in a delimited string split by delimiter$. Other letters are put to lowercase. The
delimiter$ is optional. If it is omitted, then the definition from OPTION DELIM is assumed. When specified, it may consist
of multiple characters.

If delimiter$ occurs between double quotes in string$, then it is ignored. This behavior can be changed by setting OPTION
QUOTED to FALSE. See the chapter on delimited string functions for more information about delimited strings. Example:

PRINT PROPER$("hEllO crUEl wOrLd")

PROTO
PROTO <function name>[,function name [, ...]] [ALIAS word] [TYPE c-type]

Type: statement

Defines a foreign function so it is accepted by the BaCon parser. Multiple function names may be mentioned, but these
should be separated by a comma. Optionally, PROTO accepts an alias which can be used instead of the original function
name. Also, PROTO can define a c-type to define the type of return value for a foreign function.

During compilation the BaCon program must explicitly be linked with an external library to resolve the function name. See
also OPTION PARSE to allow foreign functions unconditionally. Examples:

PROTO glClear, glClearColor, glEnable
PROTO "glutSolidTeapot" ALIAS "TeaPot"
PROTO "gtk_check_version(int,int,int)" TYPE char*

PULL
PULL x

Type: statement

Puts a value from the internal stack into variable <x>. The argument must be a variable. The stack will decrease to the next
available value.

If the internal stack has reached its last value, subsequent PULL's will retrieve this last value. If no value has been pushed
before, a PULL will deliver 0 for numeric values and an empty string for string values. See PUSH to push values to the
stack.

PUSH
PUSH <x>|<expression>

Type: statement

Pushes a value <x> or expression to the internal stack. There is no limit to the amount of values which can be put onto the
stack other than the available memory. The principle of the stack is Last In, First Out.

See also PULL to get a value from the stack.

' Initially create a new 0 value for stack
' This will only be 0 when stack wasn't declared before
PULL stack
PUSH stack
' Increase and push the stack 2x
' Stack has now 3 values
INCR stack
PUSH stack
PUSH "End"
PULL var$
' Print and pull current stack value - will return "end" 1 0
PRINT var$
PULL stack
PRINT stack
PULL stack
PRINT stack

PUTBYTE
PUTBYTE <memory> TO <handle> [CHUNK x] [SIZE y]

Type: statement

Store binary data from a memory area to either a file or a device identified by handle, with an optional amount of <x> bytes,
depending on OPTION MEMTYPE (default amount of bytes = 1). Also optionally, the actual amount stored can be
captured in variable <y>.

This statement is the inverse of GETBYTE, refer to this command for an example.

PUTLINE
PUTLINE "text"|<variable$> TO <handle>

Type: statement

Write a line of string data to a memory area identified by handle. The line will be terminated by a newline character. The

memory area must be set in streaming mode first using OPEN (see also the chapter on ramdisks and memory streams).
Example:

PUTLINE "hello world" TO mymemory

See also GETLINE to retrieve a line of text from a memory area.

RAD
RAD(x)

Type: function

Returns the radian value of x degrees. Example:

PRINT RAD(45)

RANDOM
RANDOM (x)

Type: function

This is a convenience function to generate a random integer number between 0 and x - 1. See also RND for more flexibility
in creating random numbers. Example creating a random number between 1 and 100:

number = RANDOM(100) + 1

READ
READ <x1[, x2, x3, ...]>

Type: statement

Reads a value from a DATA block into variable <x>. Example:

LOCAL dat[8]
FOR i = 0 TO 7
 READ dat[i]
NEXT
DATA 10, 20, 30, 40, 50, 60, 70, 80

Also, multiple variables may be provided:

READ a, b, c, d$
DATA 10, 20, 30, "BaCon"

See RESTORE to define where to start reading the data.

READLN
READLN <var> FROM <handle>

Type: statement

Reads a line of ASCII data from a file identified by <handle> into variable <var>. See the GETBYTE statement to read
binary data. Example:

READLN txt$ FROM myfile

REALPATH$
REALPATH$(filename$)

Type: function

Returns the absolute full path and name of a given filename. Symbolic links are resolved as well as relative references like
'../'. See also CURDIR$.

REAP
REAP(pid)

Type: function

After a forked process has ended, it can turn into a so-called 'zombie' process. This function can remove such process from
the process list, using the process ID as an argument. When the value -1 is used as argument, REAP will remove any zombie
child process.

The return value of REAP indicates the process ID of the process which was removed from the process list successfully. If
the return value is 0, then no child process has finished yet, and no process ID has been removed. When the return value is
-1, an error has occurred (a common mistake is providing a wrong process ID value).

This function does not pause and returns immediately. For an example, refer to FORK.

RECEIVE
RECEIVE <var> FROM <handle> [CHUNK <chunksize>] [SIZE <amount>]

Type: statement

Reads data from a network location identified by handle into a string variable or memory area. Subsequent reads return
more data until the network buffer is empty. The chunk size can be determined with the optional CHUNK keyword.

The amount of bytes actually received can be retrieved by using the optional SIZE keyword. If the amount of bytes received
is 0, then the other side has closed the connection in an orderly fashion. In such a situation the network connection needs to
be reopened. Example:

OPEN "www.google.com:80" FOR NETWORK AS mynet
SEND "GET / HTTP/1.1\r\nHost: www.google.com\r\n\r\n" TO mynet
REPEAT
 RECEIVE dat$ FROM mynet
 total$ = total$ & dat$
UNTIL ISFALSE(WAIT(mynet, 500))
CLOSE NETWORK mynet

RECORD
RECORD <var>[ARRAY <x>]
 LOCAL <member1> TYPE <type>
 LOCAL <member2> TYPE <type>

END RECORD

Type: statement

Defines a record <var> with members. If the record is defined in the main program, it automatically will be visible globally.
If the record is defined within a function, the record will have a local scope, meaning that it is only visible within that
function. To declare a global record in a function, use the DECLARE or GLOBAL keyword.

The members of a record should be defined using the LOCAL statement and can be accessed with the 'var.member'
notation. See the chapter on records for more details on the usage of records. Also refer to WITH for assigning values to
multiple members at the same time. Example:

RECORD var
 LOCAL x
 LOCAL y
END RECORD
var.x = 10
var.y = 20
PRINT var.x + var.y

REDIM
REDIM <var> TO <size>

Type: statement

Redimensions a one dimensional dynamic array to a new size. The contents of the array will be preserved. If the array
becomes smaller then the elements at the end of the array will be cleared. The dynamic array has to be declared previously
using DECLARE or LOCAL. Example:

REDIM a$ TO 20

REGEX
REGEX (txt$, expr$)

Type: function

Applies a POSIX Extended Regular Expression expr$ to the string txt$. If the expression matches, the position of the first
match is returned. If not, this function returns '0'. The length of the last match is returned in the reserved variable REGLEN.

Use OPTION COMPARE to set case sensitive matching. Note that this function does not support non-greedy matching. See
the chapter on regular expressions to specify different regular expression engines for more flexibility. Examples:

' Does the string match alfanum character
PRINT REGEX("Hello world", "[[:alnum:]]")

' Does the string *not* match a number
PRINT REGEX("Hello world", "[^0-9]")

' Does the string contain an a, l or z
PRINT REGEX("Hello world", "a|l|z")

REGLEN
REGLEN

Type: variable

Reserved variable containing the length of the last REGEX match.

RELATE
RELATE <assocA> TO <assocB>[, assocC, ...]

Type: statement

This statement creates a relation between associative arrays. Effectively this will result into duplication of settings; an index
in array <assocA> also will be set in array <assocB>. A previous declaration of the associative arrays involved is required.
Example:

DECLARE human, mortal ASSOC int
RELATE human TO mortal
human("socrates") = TRUE
PRINT mortal("socrates")

REM
REM [remark]

Type: statement

Adds a comment to your code. Any type of string may follow the REM statement. Instead of REM also the single quote
symbol ' maybe used to insert comments in the code.

BaCon also accepts C-style block comments: this can be done by surrounding multiple lines using /* and */.

http://linux.die.net/man/7/regex

RENAME
RENAME <filename> TO <new filename>

Type: statement

Renames a file. If different paths are included the file is moved from one path to the other. Note that an error occurs when
the target directory is on a different partition. Example:

RENAME "tmp.txt" TO "real.txt"

REPEAT
REPEAT
 <body>
 [BREAK]|[CONTINUE]
UNTIL <equation>

Type: statement

The REPEAT/UNTIL construction repeats a body of statements. The difference with WHILE/WEND is that the body will
be executed at least once. The optional BREAK statement can be used to break out the loop. With CONTINUE part of the
body can be skipped. The BETWEEN operator is allowed in the equation. Example:

REPEAT
 C = GETKEY
UNTIL C = 27

REPLACE$
REPLACE$(haystack$, needle$, replacement$ [, flag])

Type: function

Substitutes a substring <needle$> in <haystack$> with <replacement$> and returns the result. The replacement does not
necessarily need to be of the same size as the substring. With the optional flag set to 1 the <needle$> should be taken as a
regular expression, and OPTION COMPARE impacts case insensitive matching. With the optional flag set to 2,
REPLACE$ will behave as a translate, meaning that the characters in <needle$> will be replaced by the successive
characters in <replacement$>. See also EXTRACT$.

Examples:

PRINT REPLACE$("Hello world", "l", "p")
PRINT REPLACE$("Some text", "me", "123")
PRINT REPLACE$("Goodbye <all>", "<.*>", "123", TRUE)
PRINT REPLACE$("abc123def", "[[:digit:]]", "x", 1)
PRINT REPLACE$("Hello world", "old", "pme", 2)

RESIZE
RESIZE <x> TO <y>

Type: statement

Resizes memory area starting at address <x> to an amount of <y> of the type determined by OPTION MEMTYPE. If the
area is enlarged, the original contents of the area remain intact.

RESTORE
RESTORE [label]

Type: statement

Restores the internal DATA pointer(s) to the beginning of the first DATA statement.

Optionally, the restore statement allows a label from where the internal DATA pointer needs to be restored. See also READ.
Example:

DATA 1, 2, 3, 4, 5
LABEL txt
DATA "Hello", "world", "this", "is", "BaCon"
RESTORE txt
READ dat$

RESUME
RESUME

Type: function

When an error is caught, this statement tries to continue after the statement where an error occurred. Example:

TRAP LOCAL
CATCH GOTO print_err
DELETE FILE "somefile.txt"
PRINT "Resumed..."
END
LABEL print_err
 PRINT ERR$(ERROR)
 RESUME

RETURN
RETURN [value]

Type: statement

If RETURN has no argument it will return to the last invoked GOSUB. If no GOSUB was invoked previously then
RETURN has no effect.

Only in case of functions the RETURN statement must contain a value. This is the value which is returned when the
FUNCTION is finished.

RETVAL
RETVAL

Type: variable

Reserved variable containing the return status of the operating system commands executed by SYSTEM or EXEC$.

REV$
REV$(string$ [,delimiter$])

Type: function

Puts all elements in a delimited string split by delimiter$ in reverse order. The delimiter$ is optional. If it is omitted, then
the definition from OPTION DELIM is assumed. When specified, it may consist of multiple characters.

If delimiter$ occurs between double quotes in string$, then it is ignored. This behavior can be changed by setting OPTION
QUOTED to FALSE. See also the chapter on delimited string functions for more information about delimited strings.
Example:

PRINT "Reverted members: ", REV$("Rome Amsterdam Kiev Bern Paris London")

REVERSE$
REVERSE$(x$)

Type: function

Returns the reverse of x$.

REWIND
REWIND <handle>

Type: statement

Returns to the beginning of a file opened with <handle>.

RIGHT$
RIGHT$(x$, y)

Type: function

Returns y characters from the right of x$.

RND
RND

Type: function

Returns a random number between 0 and the reserved variable MAXRANDOM. The generation of random numbers can be
seeded with the statement SEED. See also the function RANDOM for a more convenient way of generating random
numbers. Example:

SEED NOW
x = RND

ROL
ROL

Type: function

This function performs a binary shift to the left. The highest bit will be recycled into bit 0. The total amount of bits in a
value is determined by the MEMTYPE option.

OPTION MEMTYPE short
PRINT ROL(32768)

ROR
ROR

Type: function

This function performs a binary shift to the right. The lowest bit will be recycled into the highest, depending on the setting
of the MEMTYPE option.

OPTION MEMTYPE int
PRINT ROR(1)

ROTATE$
ROTATE$(string$, step [,delimiter$])

Type: function

Rotates all elements in a delimited string split by delimiter$ <step> positions forward. In case the <step> parameter is a
negative number, the rotation will be backwards. The delimiter$ is optional. If it is omitted, then the definition from
OPTION DELIM is assumed. When specified, it may consist of multiple characters.

If delimiter$ occurs between double quotes in string$, then it is ignored. This behavior can be changed by setting OPTION
QUOTED to FALSE. See also the chapter on delimited string functions for more information about delimited strings.
Example:

PRINT ROTATE$("Rome Amsterdam Kiev Bern Paris London", 2)

ROUND
ROUND(x)

Type: function

Rounds x to the nearest integer number. For compatibility reasons, the keyword INT may be used instead. Note that this
function always returns an integer value.

See also FLOOR to round down to the nearest the integer and MOD to get the fraction from a fractional number.

ROWS
ROWS

Type: function

Returns the amount of rows in the current ANSI compliant terminal. Use COLUMNS to get the amount of columns.

RUN
RUN <command$>

Type: statement

Executes an operating system command thereby transferring control. This effectively means that the current program is left
permanently, the process ID is preserved and that this statement does not return to the BaCon program. Typically, the RUN
statement is used at the end of a BaCon program. It can only execute one system command at a time.

The behavior of RUN differs from the SYSTEM statement, which can execute a set of compound commands in a shell and
can query the exit status. See also EXEC$ and RUN$.

Example:

RUN "ls -l"

RUN$
RUN$(command$ [, stdin$[, out]])

Type: function

Executes an operating system command in a coprocess and returns the resulting output to the BaCon program. Because the
coprocess PID is not a shell, but the PID of the executed command itself, this function cannot return a system command exit
status, and can only execute one system command at a time. Optionally, a second argument may be used to feed to STDIN.
Also optionally, a third argument can be specified to determine whether all output needs to be captured (0 = default), only
stdout (1) or only stderr (2). See RUN and SYSTEM to plainly execute a system command. Example:

result$ = RUN$("ps x")
PRINT RUN$("rev", "This is a string", 1)
PRINT RUN$("ls -z", NULL, 2)

SAVE
SAVE string$ TO filename$

Type: statement

Saves a string to disk in one step. If the file already exists it is overwritten. See BSAVE for saving binary files in one step,
and OPEN/WRITELN/READLN/CLOSE to read and write to a file using a filehandle. Example:

SAVE result$ TO "/tmp/data.txt"

SCROLL
SCROLL <UP [x]|DOWN [x]>

Type: statement

Scrolls the current ANSI compliant terminal up or down one line. Optionally, the amount of lines to scroll can be provided.

SEARCH
SEARCH(handle, string [,flag])

Type: function

Searches for <string> in file opened with <handle>. The search returns the byte offset in the file where the first occurrence
of <string> is located. Use SEEK to effectively put the filepointer at this position. If the string data is not found, then the
value '-1' is returned.

Optionally, a third argument can be used to determine where to start the search and in which direction the search should take
place. The following values are accepted:

0: start at the beginning of the file, search forward (default)
1: start at the current position of the filepointer, search forward
2: start at the current position of the filepointer, search backward
3: start at the end of the file, search backward.

Note that when searching backwards, the actual search begins at the start position minus the length of the searched string.

SECOND
SECOND(x)

Type: function

Returns the second (0-59) where x is the amount of seconds since January 1, 1970.

SEED
SEED x

Type: statement

Seeds the random number generator with some value. After that, subsequent usages of RND and RANDOM will return
numbers in a random order. Note that seeding the random number generator with the same number also will result in the
same sequence of random numbers.

By default, a BaCon program will automatically seed the random number generator as soon as it is executed, so it may not
be needed to use this function explicitly. Example:

SEED NOW

SEEK
SEEK <handle> OFFSET <offset> [WHENCE START|CURRENT|END]

Type: statement

Puts the filepointer to new position at <offset>, optionally starting from <whence>.

SELECT
SELECT <variable> CASE <body>[;] [DEFAULT <body>] END SELECT

Type: statement

With this statement a variable can be examined on multiple values. Optionally, if none of the values match the SELECT
statement may fall back to the DEFAULT clause. Example:

SELECT myvar
 CASE 1
 PRINT "Value is 1"
 CASE 5
 PRINT "Value is 5"
 CASE 2*3
 PRINT "Value is ", 2*3
 DEFAULT
 PRINT "Value not found"
END SELECT

Contrary to most implementations, in BaCon the CASE keyword also may refer to expressions and variables. Also, BaCon
knows how to 'fall through' by either using a semicolon or a comma separated list, in case multiple values lead to the same
result:

SELECT human$
 CASE "Man"
 PRINT "It's male"
 CASE "Woman", "Girl"
 PRINT "It's female"
 CASE "Child";
 CASE "Animal"
 PRINT "It's an it"
 DEFAULT
 PRINT "Alien detected"
END SELECT

SEND
SEND <var> TO <handle> [CHUNK <chunk>] [SIZE <size>]

Type: statement

Sends data in <var> to a network location identified by <handle>. Optionally, the amount of bytes to send can be specified
with the CHUNK keyword. As by default SEND will consider the <var> to be a string, the default amount of data is the
string length of <var>. However, instead of a string, also binary data can be sent by using a memory area created by the
MEMORY function. In such a situation it is obligatory to also specify the chunk size.

The amount of bytes actually sent can be retrieved by using the optional SIZE keyword. For an example of SEND, see the
RECEIVE statement.

SETENVIRON
SETENVIRON var$, value$

Type: statement

Sets the environment variable 'var$' to 'value$'. If the environment variable already exists, this statement will overwrite a
previous value. See GETENVIRON$ to retrieve the value of an environment variable. Example:

SETENVIRON "LANG", "C"

SETSERIAL
SETSERIAL <device> IMODE|OMODE|CMODE|LMODE|SPEED|OTHER <value>

Type: statement

This statement can set the properties of a serial device. The Input Mode (IMODE), Output Mode (OMODE), Control Mode
(CMODE) and Local Mode (LMODE) can be set, as well as the speed and the special properties on the serial device. A
discussion on the details of all these options is outside the scope of this manual. Please refer to the TermIOS documentation
of your C compiler instead.

Example usage opening a serial port in 8N1, ignoring 0-byte as a break, canonical, and non-blocking with a timeout of 0.5

seconds:

OPEN "/dev/ttyUSB0" FOR DEVICE AS myserial
SETSERIAL myserial SPEED B9600
SETSERIAL myserial IMODE ~IGNBRK
SETSERIAL myserial CMODE ~CSIZE
SETSERIAL myserial CMODE CS8
SETSERIAL myserial CMODE ~PARENB
SETSERIAL myserial CMODE ~CSTOPB
SETSERIAL myserial LMODE ICANON
SETSERIAL myserial OTHER VMIN = 0
SETSERIAL myserial OTHER VTIME = 5

SGN
SGN(x)

Type: function

Returns the sign of x. If x is a negative value, this function returns -1. If x is a positive value, this function returns 1. If x is 0
then a 0 is returned.

SIGNAL
SIGNAL <sub>, <signal>

Type: statement

This statement connects a callback function to a Unix signal. Plain POSIX signal names can be used, for example SIGINT,
SIGTERM, SIGCHLD and so on. Next to that, this statement accepts the SIG_DFL (default action) and SIG_IGN (ignore
signal) symbols for a callback also.

Example to ignore the SIGCHLD signal, preventing zombie processes to occur:

SIGNAL SIG_IGN, SIGCHLD

Example connecting the <CTRL>+<C> signal to a SUB:

SUB Cleanup : ' Signal callback function
 SIGNAL SIG_DFL, SIGINT : ' Restore CTRL+C
 PRINT "Cleaning up" : ' Do your cleanup here
 STOP SIGINT : ' Send the SIGINT to myself
ENDSUB
SIGNAL Cleanup, SIGINT : ' Catch CTRL+C
PRINT "Waiting..."
key = GETKEY

SIN
SIN(x)

Type: function

Returns the calculated SINUS of x, where x is a value in radians.

SIZEOF
SIZEOF(type)

Type: function

Returns the bytesize of a C type.

SLEEP
SLEEP <x>

Type: statement

Sleeps <x> milliseconds (sleep 1000 is 1 second).

SORT
SORT <x> [SIZE <x>] [DOWN]

Type: statement

Sorts the one-dimensional array <x> in ascending order. Only the basename of the array should be mentioned, not the
dimension. The array may be a numeric, string or associative array. The amount of elements involved can be specified with
SIZE. This keyword is optional for static arrays, but should always be used in case of dynamic arrays. It has no meaning
with associative arrays. Also optionally, the keyword DOWN can be used to sort in descending order. Example:

GLOBAL a$[5] TYPE STRING
a$[0] = "Hello"
a$[1] = "my"
a$[2] = "good"
a$[4] = "friend"
SORT a$

SORT$
SORT$(string$ [,delimiter$])

Type: function

Sorts all elements in a delimited string split by delimiter$. The delimiter$ is optional. If it is omitted, then the definition
from OPTION DELIM is assumed. When specified, it may consist of multiple characters.

If delimiter$ occurs between double quotes in string$, then it is ignored. This behavior can be changed by setting OPTION
QUOTED to FALSE. See also the chapter on delimited string functions for more information about delimited strings.
Example:

PRINT "Sorted members: ", SORT$("f,q,a,c,i,b,r,t,e,d,z,", ",")

SOURCE$
SOURCE$

Type: variable

Reserved variable which contains the BaCon source code of the current running program. Note that for commercial
programs this variable should not be used, because it stores the source code as plain text in the resulting binary..

SPC$
SPC$(x)

Type: function

Returns an x amount of spaces.

SPLIT
SPLIT <string$> [BY <substr$>|<nr>] TO <array$> SIZE <variable> [STATIC]

Type: statement

This statement can split a string into smaller pieces. The optional BY argument determines where the string is being split. If
the BY keyword is omitted then the definition from OPTION DELIM is used to split string$. The results are stored in the

argument <array$> mentioned by the TO keyword. As sometimes it cannot be known in advance how many elements this
resulting array will contain, the array may not be declared before with LOCAL or GLOBAL.

If SPLIT is being used in a function or sub, then <array$> will have a local scope. Else <array$> will be visible globally,
and can be accessed within all functions and subs.

The total amount of elements created in this array is stored in <variable>. This variable can be declared explicitly using
LOCAL or GLOBAL.

If the <substr$> delimiter occurs in between double quotes, then it is skipped. This behavior can be changed by setting
OPTION QUOTED to FALSE. If a double quote needs to be present in the <string$>, it must be escaped properly.

If the value for BY is numeric, then string$ will be cut in pieces each containing <nr> characters. If <nr> is 0 then there are
no results. If <nr> is equal to or bigger than the length of the string, then the original string will be returned as an array with
one element.

Example usage:

OPTION BASE 1
LOCAL dimension
SPLIT "one,two,,three" BY "," TO array$ SIZE dimension
FOR i = 1 TO dimension
 PRINT array$[i]
NEXT

The above example will return four elements, of which the third element is empty. If OPTION COLLAPSE is put to 1, the
above example will return three elements, ignoring empty entries.

SPLIT "one,two,\"three,four\",five" BY "," TO array$ SIZE dim

This will return 4 elements, because one separator (the comma) lies in between double quotes.

The optional STATIC keyword allows the created <array> to be returned from a function. See also EXPLODE$ to split text
returning a delimited string, TOKEN$ to retrieve one single element from a delimited string, and JOIN to join array
elements into a string.

SQR
SQR(x)

Type: function

Calculates the square root from a number.

STOP
STOP [signal]

Type: statement

Halts the current program and returns to the Unix prompt. The program can be resumed by performing the Unix command
'fg', or by sending the CONT signal to its pid: kill -CONT <pid>.

The STOP statement actually sends the 'STOP' signal to the current program. Optionally, a different signal can be defined.
The signal can be a number or a predefined name from libc, like SIGQUIT, SIGKILL, SIGTERM and so on. Example
sending the <CTRL>+<C> signal:

STOP SIGINT

STR$
STR$(x)

Type: function

Convert numeric value x to a string (opposite of VAL). Example:

PRINT STR$(123)

SUB
SUB <name>[(STRING s, NUMBER i, FLOATING f, VAR v SIZE t)]
 <body>
ENDSUB | END SUB

Type: statement

Defines a subprocedure. A subprocedure never returns a value (use FUNCTION instead).

Variables used in a sub are visible globally, unless declared with LOCAL. The incoming arguments are always local. Instead
of the BaCon types STRING, NUMBER and FLOATING for the incoming arguments, also regular C-types also can be
used. If no type is specified, then BaCon will recognize the argument type from the variable suffix. In case no suffix is
available, plain NUMBER type is assumed. With VAR a variable amount of arguments can be defined. Example:

SUB add(NUMBER x, NUMBER y)
 LOCAL result
 PRINT "The sum of x and y is: ";
 result = x + y
 PRINT result
END SUB

SUM / SUMF
SUM(array, amount [,minimum])
SUMF(array, amount [,minimum])

Type: function

Returns the sum of <amount> elements in <array>. Optionally, a check can be added which specifies the minimum value for
each element to be added. If an array element falls below the specified value then it is excluded from the sum calculation.

The SUM and SUMF functions perform the same task, but SUM requires an array with integers and SUMF an array with
floating values. See also MAP. Example:

PRINT SUM(ages, 10)
PRINT SUMF(temperatures, 100, 25.5)

SWAP
SWAP x, y

Type: statement

Swaps the contents of the variables x and y. The types of the variables can be mixed. Note that when swapping an integer
with a float precision may be lost.

Numeric variables can be swapped with string variables, thereby effectively converting types. Example:

SWAP x%, y#
SWAP number, string$

SYSTEM
SYSTEM <command$>

Type: statement

Executes an operating system command. It causes the BaCon program to hold until the command has been completed. The
exit status of the executed command itself is stored in the reserved variable RETVAL. Use EXEC$ to catch the result of an
operating system command. Example:

SYSTEM "ls -l"

TAB$
TAB$(x)

Type: function

Returns an x amount of tabs.

TAIL$
TAIL$(string$, amount [, delimiter$])

Type: function

Retrieves the last <amount> elements from a delimited string$ split by delimiter$. The delimiter$ is optional. If it is
omitted, then the definition from OPTION DELIM is assumed. When specified, it may consist of multiple characters.

If delimiter$ occurs between double quotes in string$, then it is ignored. This behavior can be changed by setting OPTION
QUOTED to FALSE.

See also FIRST$ to obtain the remaining elements from the delimited string, and HEAD$ to obtain elements counting from
the start. Refer to the chapter on delimited string functions for more information about delimited strings. Example:

PRINT "Last 2 members: ", TAIL$("Rome Amsterdam Kiev Bern Paris London", 2)

TALLY
TALLY(haystack$, needle$ [,z])

Type: function

Returns the amount of times needle$ occurs in haystack$, optionally starting at position z. If the needle$ is not found, then
this function returns the value '0'. See INSTR to find the position of a string. Example:

amount = TALLY("Hello world are we all happy?", "ll")
PRINT TALLY("Don't take my ticket", "t", 10)

TAN
TAN(x)

Type: function

Returns the calculated tangent of x, where x is a value in radians.

TELL
TELL(handle)

Type: function

Returns current position in file opened with <handle>.

TEXTDOMAIN
TEXTDOMAIN <domain$>, <directory$>

Type: statement

When OPTION INTERNATIONAL is enabled, BaCon by default configures a textdomain with the current filename and a
base directory "/usr/share/locale" for the message catalogs. With this statement it is possible to explicitly specify a different
textdomain and base directory.

TIMER
TIMER

Type: function

Keeps track of the amount of milliseconds the current program is running. Example:

iter = 1

WHILE iter > 0 DO
 IF TIMER = 1 THEN BREAK
 INCR iter
WEND
PRINT "Got ", iter-1, " iterations in 1 millisecond!"

TIMEVALUE
TIMEVALUE(a,b,c,d,e,f)

Type: function

Returns the amount of seconds since January 1 1970, from year (a), month (b), day (c), hour (d), minute (e), and seconds (f).
Example:

PRINT TIMEVALUE(2009, 11, 29, 12, 0, 0)

TOKEN$
TOKEN$(haystack$, n [, delimiter$])

Type: function

Returns the nth token in haystack$ split by delimiter$. The delimiter$ is optional. If it is omitted, then the definition from
OPTION DELIM is assumed. When specified, it may consist of multiple characters.

If delimiter$ occurs between double quotes in haystack$, then it is ignored. This behavior can be changed by setting
OPTION QUOTED to FALSE.

If the indicated position is outside a valid range, the result will be an empty string. Use the FLATTEN$ function to flatten
out the returned token. See also ISTOKEN, AMOUNT and SPLIT.

Examples:

PRINT TOKEN$("a b c d \"e f\" g h i j", 6)
PRINT TOKEN$("Dog Cat @@@ Mouse Bird@@@ 123@@@", 3, "@@@")
PRINT TOKEN$("1,2,3,4,5", 3, ",")
PRINT TOKEN$("1,2," & CHR$(34) & "3,4" & CHR$(34) & ",5,", 6, ",")

TRACE
TRACE <ON|MONITOR <var1, var2, ...>|OFF>

Type: statement

The ON keyword starts trace mode. The program will wait for a key to continue. After each keypress, the next line of source
code is displayed on the screen, and then executed. Pressing the ESCAPE key will exit the program.

The MONITOR keyword also starts trace mode, but allows monitoring values of variables. After each line of source code
the content of the specified variables is displayed. Example:

LOCAL var
TRACE MONITOR var
FOR var = 1 TO 10
 INCR var
NEXT

TRAP
TRAP <LOCAL|SYSTEM>

Type: statement

Sets the runtime error trapping. By default, BaCon performs error trapping (LOCAL). BaCon tries to examine statements
and functions where possible, and will display an error message based on the operating system internals, indicating which
statement or function causes a problem. Optionally, when a CATCH is set, BaCon can jump to a LABEL instead, where a

self-defined error function can be executed, and from where a RESUME is possible.

When set to SYSTEM, error trapping is performed by the operating system. This means that if an error occurs, a signal will
be caught by the program and a generic error message is displayed on the prompt. The program will then exit gracefully

The setting LOCAL decreases the performance of the program, because additional runtime checks are carried out when the
program is executed.

TRUE
TRUE

Type: variable

Represents and returns the value of '1'. This is the opposite of the FALSE variable.

TYPEOF$
TYPEOF$(x)

Type: function

Returns the type of a variable.

UCASE$
UCASE$(x$)

Type: function

Converts x$ to uppercase characters and returns the result. See LCASE$ to do the opposite.

UCS
UCS(char)

Type: function

Calculates the Unicode value of the given UTF8 character (opposite of UTF8$). See also ASC for plain ASCII characters.
Example:

PRINT UCS("©")

ULEN
ULEN(x$ [, y])

Type: function

Returns the length of the UTF8 string x$. Optionally, the position at y can be specified. See LEN for plain ASCII strings.

UNFLATTEN$
UNFLATTEN$(txt$ [, groupingchar$])

Type: function

Unflattens a string where the double quote symbol is used to group parts of the string together. The string will be
surrounded with double quotes and any existing escapes will be escaped. Instead of the double quote symbol a different
character can be specified (optional). See also FLATTEN$ for the reverse operation. Examples:

PRINT UNFLATTEN$("\"Hello \\\"cruel\\\" world\"")
PRINT UNFLATTEN$("\'Hello world\'", "'")

UNIQ$
UNIQ$(string$ [,delimiter$])

Type: function

Unifies all elements in a delimited string split by delimiter$. The delimiter$ is optional. If it is omitted, then the definition
from OPTION DELIM is assumed. When specified, it may consist of multiple characters.

If delimiter$ occurs between double quotes in string$, then it is ignored. This behavior can be changed by setting OPTION
QUOTED to FALSE. See also the chapter on delimited string functions for more information about delimited strings.
Example:

PRINT "A sequence with unique members: ", UNIQ$("a a b c c d e f a c f")

USEC
USEC
 <body>
ENDUSEC | END USEC

Type: statement

Defines a body with C code. This code is put unmodified into the generated C source file. Example:

USEC
 char *str;
 str = strdup("Hello");
 printf("%s\n", str);
END USEC

USEH
USEH
 <body>
ENDUSEH | END USEH

Type: statement

Defines a body with C declarations and/or definitions. This code is put unmodified into the generated global header source
file. This can particularly be useful in case of using variables from external libraries. See also USEC to pass C source code.
Example:

USEH
 char *str;
 extern int pbl_errno;
END USEH

UTF8$
UTF8$(x)

Type: function

Returns the character belonging to Unicode number x. This function does the opposite of UCS. The value for x can lie
between 0 and 0x10FFFF. Note that the result only will be visible in a valid UTF8 environment, and also that the installed
character set should support the character. See also CHR$ for plain ASCII characters. The following should print a smiley
emoticon:

LET a$ = UTF8$(0x1F600)
PRINT a$

VAL
VAL(x$)

Type: function

Returns the actual value of x$. This is the opposite of STR$. Example:

nr$ = "456"
q = VAL(nr$)

VAR
VAR <array$> SIZE <x>

Type: statement

Declares a variable argument list in a FUNCTION or SUB. There may not be other variable declarations in the function
header. The arguments to the function are put into an array of strings, and the resulting amount of elements is stored in <x>.
Example:

OPTION BASE 1
SUB demo (VAR arg$ SIZE amount)
 LOCAL x
 PRINT "Amount of incoming arguments: ", amount
 FOR x = 1 TO amount
 PRINT arg$[x]
 NEXT
END SUB

' No argument
demo(0)
' One argument
demo("abc")
' Three arguments
demo("123", "456", "789")

VERSION$
VERSION$

Type: variable

Reserved variable which contains the BaCon version text.

WAIT
WAIT(handle, milliseconds)

Type: function

Suspends the program for a maximum of <milliseconds> until data becomes available on <handle>.

This is especially useful in network programs where a RECEIVE will block if there is no data available. The WAIT function
checks the handle and if there is data in the queue, it returns with value '1'. If there is no data then it waits for at most
<milliseconds> before it returns. If there is no data available, WAIT returns '0'. Refer to the RECEIVE statement for an
example.

This statement also can be used to find out if a key is pressed without actually waiting for a key, so without interrupting the
current program. In this case, use the STDIN filedescriptor (0) as the handle. Example:

REPEAT
 PRINT "Press Escape... waiting..."
 key = WAIT(STDIN_FILENO, 50)
UNTIL key = 27

As can be observed in this code, instead of '0' the reserved POSIX variable STDIN_FILENO can be used also. See also
appendix B for more standard POSIX variables.

WEEK
WEEK(x)

Type: function

Returns the week number (1-53) in a year, where x is the amount of seconds since January 1, 1970. Example:

PRINT WEEK(NOW)

WEEKDAY$
WEEKDAY$(x)

Type: function

Returns the day of the week as a string in the system's locale ("Monday", "Tuesday", etc), where x is the amount of seconds
since January 1, 1970.

WHILE
WHILE <equation> [DO]
 <body>
 [BREAK]|[CONTINUE]
WEND

Type: statement

The WHILE/WEND is used to repeat a body of statements and functions. The DO keyword is optional. The optional
BREAK statement can be used to break out the loop. With the optional CONTINUE part of the body can be skipped.
Example:

LET a = 5
WHILE a > 0 DO
 PRINT a
 a = a - 1
WEND

As the WHILE statement uses an equation to evaluate, it also allows the BETWEEN operator:

a = 2
WHILE a BETWEEN 1;10
 PRINT a
 INCR a
WEND

WITH
WITH <var>
 .<var> = <value>
 .<var> = <value>

END WITH

Type: statement

Assign values to individual members of a RECORD. For example:

WITH myrecord
 .name$ = "Peter"
 .age = 41
 .street = Falkwood Area 1
 .city = The Hague
END WITH

WRITELN
WRITELN "text"|<var> TO <handle>

Type: statement

Write a line of ASCII data to a file identified by handle. A semicolon at the end of the line prevents writing a newline. Refer
to the PUTBYTE statement to write binary data. Examples:

WRITELN "Hello world with a newline" TO myfile
WRITELN "Without newline"; TO myfile

YEAR
YEAR(x)

Type: function

Returns the year where x is amount of seconds since January 1, 1970. Example:

PRINT YEAR(NOW)

Appendix A: Runtime error codes

Code Meaning

0 Success

1 Trying to access illegal memory

2 Error opening file

3 Could not open library

4 Symbol not found in library

5 Wrong hex- or binary value

6 Unable to claim memory

7 Unable to delete file

8 Could not open directory

9 Unable to rename file

10 NETWORK argument should contain colon with port number

11 Could not resolve hostname

12 Socket error

13 Unable to open address

14 Error reading from socket

15 Error sending to socket

16 Error checking socket

17 Unable to bind the specified socket address

18 Unable to listen to socket address

Code Meaning

19 Cannot accept incoming connection

20 Unable to remove directory

21 Unable to create directory

22 Unable to change to directory

23 GETENVIRON argument does not exist as environment variable

24 Unable to stat file

25 Search contains illegal string

26 Cannot return OS name

27 Illegal regex expression

28 Unable to create bidirectional pipes

29 Unable to fork process

30 Cannot read from pipe

31 Gosub nesting too deep

32 Could not open device

33 Error configuring serial port

34 Error accessing device

35 Error in INPUT

36 Illegal value in SORT dimension

37 Illegal option for SEARCH

38 Invalid UTF8 string

Appendix B: standard POSIX variables

Variable Value

EXIT_SUCCESS 0

EXIT_FAILURE 1

STDIN_FILENO 0

STDOUT_FILENO 1

STDERR_FILENO 2

RAND_MAX System dependent

Appendix C: reserved keywords and functions
All keywords belonging to the C language cannot be redefined in a BaCon program:

auto, break, case, char, const, continue, default, do, double, else, enum, extern, float, for, goto, if, int, long, register, return,
short, signed, sizeof, static, struct, switch, typedef, union, unsigned, void, volatile, while.

Functions defined in libc, libm or libdl cannot be redefined in a BaCon program, most notorious being:

exit, index, y0, y0f, y0l, y1, y1f, y1l, yn, ynf, ynl, dlopen, dlsym, dlclose.

Symbols and macro definitions defined by the hash engine cannot be reused. These start with 'HASHTABLE'.

All symbols mentioned in the paragraph "Reserved Names" of any C manual cannot be redefined.

This documentation © by Peter van Eerten.
Please report errors to: REVERSE$("gro.retrevnoc-cisab@retep")

Created with LibreOffice 5.1.6.2

Back to top of document

http://www.libreoffice.org/

	Introduction
	BaCon usage and parameters
	General syntax
	Mathematics, variables
	Equations
	The BETWEEN keyword
	Indexed arrays
	Declaration of static arrays
	Declaration of dynamic arrays
	Dimensions
	Passing arrays to functions or subs
	Returning arrays from functions

	Associative arrays
	Declaration
	Relations, lookups, keys
	Basic logic programming

	Records
	Declaration
	Arrays of records
	Passing records to functions or subs
	Returning records from functions

	Strings by value or by reference
	ASCII, Unicode, UTF8
	Creating and linking to libraries created with BaCon
	Step 1: create a library
	Step 2: compile the library
	Step 3: copy library to a system path
	Step 4: update linker cache
	Step 5: demonstration program
	Step 6: compile and link
	Remarks

	Creating internationalization files
	Step 1: create program
	Step 2: compile program
	Step 3: create catalog file
	Step 4: add translations
	Step 5: create object file
	Step 6: install
	Step 7: setup Unix environment

	Networking
	TCP
	UDP
	BROADCAST
	MULTICAST
	SCTP

	Ramdisks and memory streams
	Delimited strings
	Regular expressions
	Error trapping, error catching and debugging
	Notes on transcompiling
	Overview of BaCon statements and functions
	ABS
	ACOS
	ADDRESS
	ALARM
	ALIAS
	ALIGN$
	AMOUNT
	AND
	APPEND
	APPEND$
	ARGUMENT$
	ASC
	ASIN
	ATN
	BAPPEND
	BASENAME$
	BIN$
	BIT
	BLOAD
	BREAK
	BSAVE
	BYTELEN
	CALL
	CATCH
	CEIL
	CHANGE$
	CHANGEDIR
	CHOP$
	CHR$
	CLEAR
	CLOSE
	CMDLINE
	COLOR
	COLUMNS
	CONCAT$
	CONST
	CONTINUE
	COPY
	COS
	COUNT
	CR$
	CURDIR$
	CURSOR
	CUT$
	DATA
	DAY
	DEC
	DECLARE
	DECR
	DEF FN
	DEG
	DEL$
	DELETE
	DELIM$
	DIRNAME$
	DO
	DOTIMES
	EL$
	END
	ENDFILE
	ENUM
	EPRINT
	EQ
	EQUAL
	ERR$
	ERROR
	EVEN
	EXCHANGE$
	EXEC$
	EXIT
	EXP
	EXPLODE$
	EXTRACT$
	FALSE
	FILEEXISTS
	FILELEN
	FILETIME
	FILETYPE
	FILL$
	FIRST$
	FLATTEN$
	FLOOR
	FOR
	FORK
	FP
	FREE
	FUNCTION
	GETBYTE
	GETENVIRON$
	GETFILE
	GETKEY
	GETLINE
	GETPEER$
	GETX / GETY
	GLOBAL
	GOSUB
	GOTO
	GOTOXY
	HEAD$
	HEX$
	HOST$
	HOSTNAME$
	HOUR
	IF
	IIF / IIF$
	IMPORT
	INBETWEEN$
	INCLUDE
	INCR
	INPUT
	INSERT$
	INSTR
	INSTRREV
	INTL$
	ISASCII
	ISFALSE
	ISKEY
	ISTOKEN
	ISTRUE
	JOIN
	LABEL
	LAST$
	LCASE$
	LEFT$
	LEN
	LET
	LINENO
	LOAD$
	LOCAL
	LOG
	LOOKUP
	MAKEDIR
	MAP
	MAX / MAX$
	MAXNUM
	MAXRANDOM
	ME$
	MEMCHECK
	MEMORY
	MEMREWIND
	MEMTELL
	MID$
	MIN / MIN$
	MINUTE
	MOD
	MONTH
	MONTH$
	MYPID
	NE
	NL$
	NNTL$
	NOT
	NOW
	NRKEYS
	OBTAIN$
	ODD
	ON
	OPEN
	OPTION
	OR
	OS$
	OUTBETWEEN$
	PEEK
	PI
	POKE
	POW
	PRAGMA
	PRINT
	PROPER$
	PROTO
	PULL
	PUSH
	PUTBYTE
	PUTLINE
	RAD
	RANDOM
	READ
	READLN
	REALPATH$
	REAP
	RECEIVE
	RECORD
	REDIM
	REGEX
	REGLEN
	RELATE
	REM
	RENAME
	REPEAT
	REPLACE$
	RESIZE
	RESTORE
	RESUME
	RETURN
	RETVAL
	REV$
	REVERSE$
	REWIND
	RIGHT$
	RND
	ROL
	ROR
	ROTATE$
	ROUND
	ROWS
	RUN
	RUN$
	SAVE
	SCROLL
	SEARCH
	SECOND
	SEED
	SEEK
	SELECT
	SEND
	SETENVIRON
	SETSERIAL
	SGN
	SIGNAL
	SIN
	SIZEOF
	SLEEP
	SORT
	SORT$
	SOURCE$
	SPC$
	SPLIT
	SQR
	STOP
	STR$
	SUB
	SUM / SUMF
	SWAP
	SYSTEM
	TAB$
	TAIL$
	TALLY
	TAN
	TELL
	TEXTDOMAIN
	TIMER
	TIMEVALUE
	TOKEN$
	TRACE
	TRAP
	TRUE
	TYPEOF$
	UCASE$
	UCS
	ULEN
	UNFLATTEN$
	UNIQ$
	USEC
	USEH
	UTF8$
	VAL
	VAR
	VERSION$
	WAIT
	WEEK
	WEEKDAY$
	WHILE
	WITH
	WRITELN
	YEAR

	Appendix A: Runtime error codes
	Appendix B: standard POSIX variables
	Appendix C: reserved keywords and functions

