GDB (xrefs)
/tmp/gdb-7.10/gdb/ppc64-tdep.c
Go to the documentation of this file.
1 /* Common target-dependent code for ppc64 GDB, the GNU debugger.
2 
3  Copyright (C) 1986-2015 Free Software Foundation, Inc.
4 
5  This file is part of GDB.
6 
7  This program is free software; you can redistribute it and/or modify
8  it under the terms of the GNU General Public License as published by
9  the Free Software Foundation; either version 3 of the License, or
10  (at your option) any later version.
11 
12  This program is distributed in the hope that it will be useful,
13  but WITHOUT ANY WARRANTY; without even the implied warranty of
14  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15  GNU General Public License for more details.
16 
17  You should have received a copy of the GNU General Public License
18  along with this program. If not, see <http://www.gnu.org/licenses/>. */
19 
20 #include "defs.h"
21 #include "frame.h"
22 #include "gdbcore.h"
23 #include "infrun.h"
24 #include "ppc-tdep.h"
25 #include "ppc64-tdep.h"
26 #include "elf-bfd.h"
27 
28 /* Macros for matching instructions. Note that, since all the
29  operands are masked off before they're or-ed into the instruction,
30  you can use -1 to make masks. */
31 
32 #define insn_d(opcd, rts, ra, d) \
33  ((((opcd) & 0x3f) << 26) \
34  | (((rts) & 0x1f) << 21) \
35  | (((ra) & 0x1f) << 16) \
36  | ((d) & 0xffff))
37 
38 #define insn_ds(opcd, rts, ra, d, xo) \
39  ((((opcd) & 0x3f) << 26) \
40  | (((rts) & 0x1f) << 21) \
41  | (((ra) & 0x1f) << 16) \
42  | ((d) & 0xfffc) \
43  | ((xo) & 0x3))
44 
45 #define insn_xfx(opcd, rts, spr, xo) \
46  ((((opcd) & 0x3f) << 26) \
47  | (((rts) & 0x1f) << 21) \
48  | (((spr) & 0x1f) << 16) \
49  | (((spr) & 0x3e0) << 6) \
50  | (((xo) & 0x3ff) << 1))
51 
52 /* If PLT is the address of a 64-bit PowerPC PLT entry,
53  return the function's entry point. */
54 
55 static CORE_ADDR
57 {
58  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
59  /* The first word of the PLT entry is the function entry point. */
60  return (CORE_ADDR) read_memory_unsigned_integer (plt, 8, byte_order);
61 }
62 
63 /* Patterns for the standard linkage functions. These are built by
64  build_plt_stub in bfd/elf64-ppc.c. */
65 
66 /* Old ELFv1 PLT call stub. */
67 
68 static struct ppc_insn_pattern ppc64_standard_linkage1[] =
69  {
70  /* addis r12, r2, <any> */
71  { insn_d (-1, -1, -1, 0), insn_d (15, 12, 2, 0), 0 },
72 
73  /* std r2, 40(r1) */
74  { -1, insn_ds (62, 2, 1, 40, 0), 0 },
75 
76  /* ld r11, <any>(r12) */
77  { insn_ds (-1, -1, -1, 0, -1), insn_ds (58, 11, 12, 0, 0), 0 },
78 
79  /* addis r12, r12, 1 <optional> */
80  { insn_d (-1, -1, -1, -1), insn_d (15, 12, 12, 1), 1 },
81 
82  /* ld r2, <any>(r12) */
83  { insn_ds (-1, -1, -1, 0, -1), insn_ds (58, 2, 12, 0, 0), 0 },
84 
85  /* addis r12, r12, 1 <optional> */
86  { insn_d (-1, -1, -1, -1), insn_d (15, 12, 12, 1), 1 },
87 
88  /* mtctr r11 */
89  { insn_xfx (-1, -1, -1, -1), insn_xfx (31, 11, 9, 467), 0 },
90 
91  /* ld r11, <any>(r12) <optional> */
92  { insn_ds (-1, -1, -1, 0, -1), insn_ds (58, 11, 12, 0, 0), 1 },
93 
94  /* bctr */
95  { -1, 0x4e800420, 0 },
96 
97  { 0, 0, 0 }
98  };
99 
100 /* ELFv1 PLT call stub to access PLT entries more than +/- 32k from r2.
101  Also supports older stub with different placement of std 2,40(1),
102  a stub that omits the std 2,40(1), and both versions of power7
103  thread safety read barriers. Note that there are actually two more
104  instructions following "cmpldi r2, 0", "bnectr+" and "b <glink_i>",
105  but there isn't any need to match them. */
106 
107 static struct ppc_insn_pattern ppc64_standard_linkage2[] =
108  {
109  /* std r2, 40(r1) <optional> */
110  { -1, insn_ds (62, 2, 1, 40, 0), 1 },
111 
112  /* addis r12, r2, <any> */
113  { insn_d (-1, -1, -1, 0), insn_d (15, 12, 2, 0), 0 },
114 
115  /* std r2, 40(r1) <optional> */
116  { -1, insn_ds (62, 2, 1, 40, 0), 1 },
117 
118  /* ld r11, <any>(r12) */
119  { insn_ds (-1, -1, -1, 0, -1), insn_ds (58, 11, 12, 0, 0), 0 },
120 
121  /* addi r12, r12, <any> <optional> */
122  { insn_d (-1, -1, -1, 0), insn_d (14, 12, 12, 0), 1 },
123 
124  /* mtctr r11 */
125  { insn_xfx (-1, -1, -1, -1), insn_xfx (31, 11, 9, 467), 0 },
126 
127  /* xor r11, r11, r11 <optional> */
128  { -1, 0x7d6b5a78, 1 },
129 
130  /* add r12, r12, r11 <optional> */
131  { -1, 0x7d8c5a14, 1 },
132 
133  /* ld r2, <any>(r12) */
134  { insn_ds (-1, -1, -1, 0, -1), insn_ds (58, 2, 12, 0, 0), 0 },
135 
136  /* ld r11, <any>(r12) <optional> */
137  { insn_ds (-1, -1, -1, 0, -1), insn_ds (58, 11, 12, 0, 0), 1 },
138 
139  /* bctr <optional> */
140  { -1, 0x4e800420, 1 },
141 
142  /* cmpldi r2, 0 <optional> */
143  { -1, 0x28220000, 1 },
144 
145  { 0, 0, 0 }
146  };
147 
148 /* ELFv1 PLT call stub to access PLT entries within +/- 32k of r2. */
149 
150 static struct ppc_insn_pattern ppc64_standard_linkage3[] =
151  {
152  /* std r2, 40(r1) <optional> */
153  { -1, insn_ds (62, 2, 1, 40, 0), 1 },
154 
155  /* ld r11, <any>(r2) */
156  { insn_ds (-1, -1, -1, 0, -1), insn_ds (58, 11, 2, 0, 0), 0 },
157 
158  /* addi r2, r2, <any> <optional> */
159  { insn_d (-1, -1, -1, 0), insn_d (14, 2, 2, 0), 1 },
160 
161  /* mtctr r11 */
162  { insn_xfx (-1, -1, -1, -1), insn_xfx (31, 11, 9, 467), 0 },
163 
164  /* xor r11, r11, r11 <optional> */
165  { -1, 0x7d6b5a78, 1 },
166 
167  /* add r2, r2, r11 <optional> */
168  { -1, 0x7c425a14, 1 },
169 
170  /* ld r11, <any>(r2) <optional> */
171  { insn_ds (-1, -1, -1, 0, -1), insn_ds (58, 11, 2, 0, 0), 1 },
172 
173  /* ld r2, <any>(r2) */
174  { insn_ds (-1, -1, -1, 0, -1), insn_ds (58, 2, 2, 0, 0), 0 },
175 
176  /* bctr <optional> */
177  { -1, 0x4e800420, 1 },
178 
179  /* cmpldi r2, 0 <optional> */
180  { -1, 0x28220000, 1 },
181 
182  { 0, 0, 0 }
183  };
184 
185 /* ELFv1 PLT call stub to access PLT entries more than +/- 32k from r2.
186  A more modern variant of ppc64_standard_linkage2 differing in
187  register usage. */
188 
189 static struct ppc_insn_pattern ppc64_standard_linkage4[] =
190  {
191  /* std r2, 40(r1) <optional> */
192  { -1, insn_ds (62, 2, 1, 40, 0), 1 },
193 
194  /* addis r11, r2, <any> */
195  { insn_d (-1, -1, -1, 0), insn_d (15, 11, 2, 0), 0 },
196 
197  /* ld r12, <any>(r11) */
198  { insn_ds (-1, -1, -1, 0, -1), insn_ds (58, 12, 11, 0, 0), 0 },
199 
200  /* addi r11, r11, <any> <optional> */
201  { insn_d (-1, -1, -1, 0), insn_d (14, 11, 11, 0), 1 },
202 
203  /* mtctr r12 */
204  { insn_xfx (-1, -1, -1, -1), insn_xfx (31, 12, 9, 467), 0 },
205 
206  /* xor r2, r12, r12 <optional> */
207  { -1, 0x7d826278, 1 },
208 
209  /* add r11, r11, r2 <optional> */
210  { -1, 0x7d6b1214, 1 },
211 
212  /* ld r2, <any>(r11) */
213  { insn_ds (-1, -1, -1, 0, -1), insn_ds (58, 2, 11, 0, 0), 0 },
214 
215  /* ld r11, <any>(r11) <optional> */
216  { insn_ds (-1, -1, -1, 0, -1), insn_ds (58, 11, 11, 0, 0), 1 },
217 
218  /* bctr <optional> */
219  { -1, 0x4e800420, 1 },
220 
221  /* cmpldi r2, 0 <optional> */
222  { -1, 0x28220000, 1 },
223 
224  { 0, 0, 0 }
225  };
226 
227 /* ELFv1 PLT call stub to access PLT entries within +/- 32k of r2.
228  A more modern variant of ppc64_standard_linkage3 differing in
229  register usage. */
230 
231 static struct ppc_insn_pattern ppc64_standard_linkage5[] =
232  {
233  /* std r2, 40(r1) <optional> */
234  { -1, insn_ds (62, 2, 1, 40, 0), 1 },
235 
236  /* ld r12, <any>(r2) */
237  { insn_ds (-1, -1, -1, 0, -1), insn_ds (58, 12, 2, 0, 0), 0 },
238 
239  /* addi r2, r2, <any> <optional> */
240  { insn_d (-1, -1, -1, 0), insn_d (14, 2, 2, 0), 1 },
241 
242  /* mtctr r12 */
243  { insn_xfx (-1, -1, -1, -1), insn_xfx (31, 12, 9, 467), 0 },
244 
245  /* xor r11, r12, r12 <optional> */
246  { -1, 0x7d8b6278, 1 },
247 
248  /* add r2, r2, r11 <optional> */
249  { -1, 0x7c425a14, 1 },
250 
251  /* ld r11, <any>(r2) <optional> */
252  { insn_ds (-1, -1, -1, 0, -1), insn_ds (58, 11, 2, 0, 0), 1 },
253 
254  /* ld r2, <any>(r2) */
255  { insn_ds (-1, -1, -1, 0, -1), insn_ds (58, 2, 2, 0, 0), 0 },
256 
257  /* bctr <optional> */
258  { -1, 0x4e800420, 1 },
259 
260  /* cmpldi r2, 0 <optional> */
261  { -1, 0x28220000, 1 },
262 
263  { 0, 0, 0 }
264  };
265 
266 /* ELFv2 PLT call stub to access PLT entries more than +/- 32k from r2. */
267 
268 static struct ppc_insn_pattern ppc64_standard_linkage6[] =
269  {
270  /* std r2, 24(r1) <optional> */
271  { -1, insn_ds (62, 2, 1, 24, 0), 1 },
272 
273  /* addis r11, r2, <any> */
274  { insn_d (-1, -1, -1, 0), insn_d (15, 11, 2, 0), 0 },
275 
276  /* ld r12, <any>(r11) */
277  { insn_ds (-1, -1, -1, 0, -1), insn_ds (58, 12, 11, 0, 0), 0 },
278 
279  /* mtctr r12 */
280  { insn_xfx (-1, -1, -1, -1), insn_xfx (31, 12, 9, 467), 0 },
281 
282  /* bctr */
283  { -1, 0x4e800420, 0 },
284 
285  { 0, 0, 0 }
286  };
287 
288 /* ELFv2 PLT call stub to access PLT entries within +/- 32k of r2. */
289 
290 static struct ppc_insn_pattern ppc64_standard_linkage7[] =
291  {
292  /* std r2, 24(r1) <optional> */
293  { -1, insn_ds (62, 2, 1, 24, 0), 1 },
294 
295  /* ld r12, <any>(r2) */
296  { insn_ds (-1, -1, -1, 0, -1), insn_ds (58, 12, 2, 0, 0), 0 },
297 
298  /* mtctr r12 */
299  { insn_xfx (-1, -1, -1, -1), insn_xfx (31, 12, 9, 467), 0 },
300 
301  /* bctr */
302  { -1, 0x4e800420, 0 },
303 
304  { 0, 0, 0 }
305  };
306 
307 /* ELFv2 PLT call stub to access PLT entries more than +/- 32k from r2,
308  supporting fusion. */
309 
310 static struct ppc_insn_pattern ppc64_standard_linkage8[] =
311  {
312  /* std r2, 24(r1) <optional> */
313  { -1, insn_ds (62, 2, 1, 24, 0), 1 },
314 
315  /* addis r12, r2, <any> */
316  { insn_d (-1, -1, -1, 0), insn_d (15, 12, 2, 0), 0 },
317 
318  /* ld r12, <any>(r12) */
319  { insn_ds (-1, -1, -1, 0, -1), insn_ds (58, 12, 12, 0, 0), 0 },
320 
321  /* mtctr r12 */
322  { insn_xfx (-1, -1, -1, -1), insn_xfx (31, 12, 9, 467), 0 },
323 
324  /* bctr */
325  { -1, 0x4e800420, 0 },
326 
327  { 0, 0, 0 }
328  };
329 
330 /* When the dynamic linker is doing lazy symbol resolution, the first
331  call to a function in another object will go like this:
332 
333  - The user's function calls the linkage function:
334 
335  100003d4: 4b ff ff ad bl 10000380 <nnnn.plt_call.printf>
336  100003d8: e8 41 00 28 ld r2,40(r1)
337 
338  - The linkage function loads the entry point and toc pointer from
339  the function descriptor in the PLT, and jumps to it:
340 
341  <nnnn.plt_call.printf>:
342  10000380: f8 41 00 28 std r2,40(r1)
343  10000384: e9 62 80 78 ld r11,-32648(r2)
344  10000388: 7d 69 03 a6 mtctr r11
345  1000038c: e8 42 80 80 ld r2,-32640(r2)
346  10000390: 28 22 00 00 cmpldi r2,0
347  10000394: 4c e2 04 20 bnectr+
348  10000398: 48 00 03 a0 b 10000738 <printf@plt>
349 
350  - But since this is the first time that PLT entry has been used, it
351  sends control to its glink entry. That loads the number of the
352  PLT entry and jumps to the common glink0 code:
353 
354  <printf@plt>:
355  10000738: 38 00 00 01 li r0,1
356  1000073c: 4b ff ff bc b 100006f8 <__glink_PLTresolve>
357 
358  - The common glink0 code then transfers control to the dynamic
359  linker's fixup code:
360 
361  100006f0: 0000000000010440 .quad plt0 - (. + 16)
362  <__glink_PLTresolve>:
363  100006f8: 7d 88 02 a6 mflr r12
364  100006fc: 42 9f 00 05 bcl 20,4*cr7+so,10000700
365  10000700: 7d 68 02 a6 mflr r11
366  10000704: e8 4b ff f0 ld r2,-16(r11)
367  10000708: 7d 88 03 a6 mtlr r12
368  1000070c: 7d 82 5a 14 add r12,r2,r11
369  10000710: e9 6c 00 00 ld r11,0(r12)
370  10000714: e8 4c 00 08 ld r2,8(r12)
371  10000718: 7d 69 03 a6 mtctr r11
372  1000071c: e9 6c 00 10 ld r11,16(r12)
373  10000720: 4e 80 04 20 bctr
374 
375  Eventually, this code will figure out how to skip all of this,
376  including the dynamic linker. At the moment, we just get through
377  the linkage function. */
378 
379 /* If the current thread is about to execute a series of instructions
380  at PC matching the ppc64_standard_linkage pattern, and INSN is the result
381  from that pattern match, return the code address to which the
382  standard linkage function will send them. (This doesn't deal with
383  dynamic linker lazy symbol resolution stubs.) */
384 
385 static CORE_ADDR
387  CORE_ADDR pc, unsigned int *insn)
388 {
389  struct gdbarch *gdbarch = get_frame_arch (frame);
390  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
391 
392  /* The address of the PLT entry this linkage function references. */
393  CORE_ADDR plt
395  tdep->ppc_gp0_regnum + 2)
396  + (ppc_insn_d_field (insn[0]) << 16)
397  + ppc_insn_ds_field (insn[2]));
398 
399  return ppc64_plt_entry_point (gdbarch, plt);
400 }
401 
402 static CORE_ADDR
404  CORE_ADDR pc, unsigned int *insn)
405 {
406  struct gdbarch *gdbarch = get_frame_arch (frame);
407  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
408 
409  /* The address of the PLT entry this linkage function references. */
410  CORE_ADDR plt
412  tdep->ppc_gp0_regnum + 2)
413  + (ppc_insn_d_field (insn[1]) << 16)
414  + ppc_insn_ds_field (insn[3]));
415 
416  return ppc64_plt_entry_point (gdbarch, plt);
417 }
418 
419 static CORE_ADDR
421  CORE_ADDR pc, unsigned int *insn)
422 {
423  struct gdbarch *gdbarch = get_frame_arch (frame);
424  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
425 
426  /* The address of the PLT entry this linkage function references. */
427  CORE_ADDR plt
429  tdep->ppc_gp0_regnum + 2)
430  + ppc_insn_ds_field (insn[1]));
431 
432  return ppc64_plt_entry_point (gdbarch, plt);
433 }
434 
435 static CORE_ADDR
437  CORE_ADDR pc, unsigned int *insn)
438 {
439  struct gdbarch *gdbarch = get_frame_arch (frame);
440  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
441 
442  CORE_ADDR plt
444  + (ppc_insn_d_field (insn[1]) << 16)
445  + ppc_insn_ds_field (insn[2]));
446 
447  return ppc64_plt_entry_point (gdbarch, plt);
448 }
449 
450 
451 /* Given that we've begun executing a call trampoline at PC, return
452  the entry point of the function the trampoline will go to.
453 
454  When the execution direction is EXEC_REVERSE, scan backward to
455  check whether we are in the middle of a PLT stub. */
456 
457 CORE_ADDR
459 {
460 #define MAX(a,b) ((a) > (b) ? (a) : (b))
461  unsigned int insns[MAX (MAX (MAX (ARRAY_SIZE (ppc64_standard_linkage1),
462  ARRAY_SIZE (ppc64_standard_linkage2)),
463  MAX (ARRAY_SIZE (ppc64_standard_linkage3),
464  ARRAY_SIZE (ppc64_standard_linkage4))),
465  MAX (MAX (ARRAY_SIZE (ppc64_standard_linkage5),
466  ARRAY_SIZE (ppc64_standard_linkage6)),
467  MAX (ARRAY_SIZE (ppc64_standard_linkage7),
468  ARRAY_SIZE (ppc64_standard_linkage8))))
469  - 1];
470  CORE_ADDR target;
471  int scan_limit, i;
472 
473  scan_limit = 1;
474  /* When reverse-debugging, scan backward to check whether we are
475  in the middle of trampoline code. */
477  scan_limit = ARRAY_SIZE (insns) - 1;
478 
479  for (i = 0; i < scan_limit; i++)
480  {
481  if (i < ARRAY_SIZE (ppc64_standard_linkage8) - 1
482  && ppc_insns_match_pattern (frame, pc, ppc64_standard_linkage8, insns))
483  pc = ppc64_standard_linkage4_target (frame, pc, insns);
484  else if (i < ARRAY_SIZE (ppc64_standard_linkage7) - 1
485  && ppc_insns_match_pattern (frame, pc, ppc64_standard_linkage7,
486  insns))
487  pc = ppc64_standard_linkage3_target (frame, pc, insns);
488  else if (i < ARRAY_SIZE (ppc64_standard_linkage6) - 1
489  && ppc_insns_match_pattern (frame, pc, ppc64_standard_linkage6,
490  insns))
491  pc = ppc64_standard_linkage4_target (frame, pc, insns);
492  else if (i < ARRAY_SIZE (ppc64_standard_linkage5) - 1
493  && ppc_insns_match_pattern (frame, pc, ppc64_standard_linkage5,
494  insns)
495  && (insns[8] != 0 || insns[9] != 0))
496  pc = ppc64_standard_linkage3_target (frame, pc, insns);
497  else if (i < ARRAY_SIZE (ppc64_standard_linkage4) - 1
498  && ppc_insns_match_pattern (frame, pc, ppc64_standard_linkage4,
499  insns)
500  && (insns[9] != 0 || insns[10] != 0))
501  pc = ppc64_standard_linkage4_target (frame, pc, insns);
502  else if (i < ARRAY_SIZE (ppc64_standard_linkage3) - 1
503  && ppc_insns_match_pattern (frame, pc, ppc64_standard_linkage3,
504  insns)
505  && (insns[8] != 0 || insns[9] != 0))
506  pc = ppc64_standard_linkage3_target (frame, pc, insns);
507  else if (i < ARRAY_SIZE (ppc64_standard_linkage2) - 1
508  && ppc_insns_match_pattern (frame, pc, ppc64_standard_linkage2,
509  insns)
510  && (insns[10] != 0 || insns[11] != 0))
511  pc = ppc64_standard_linkage2_target (frame, pc, insns);
512  else if (i < ARRAY_SIZE (ppc64_standard_linkage1) - 1
513  && ppc_insns_match_pattern (frame, pc, ppc64_standard_linkage1,
514  insns))
515  pc = ppc64_standard_linkage1_target (frame, pc, insns);
516  else
517  {
518  /* Scan backward one more instructions if doesn't match. */
519  pc -= 4;
520  continue;
521  }
522 
523  /* The PLT descriptor will either point to the already resolved target
524  address, or else to a glink stub. As the latter carry synthetic @plt
525  symbols, find_solib_trampoline_target should be able to resolve them. */
526  target = find_solib_trampoline_target (frame, pc);
527  return target ? target : pc;
528  }
529 
530  return 0;
531 }
532 
533 /* Support for convert_from_func_ptr_addr (ARCH, ADDR, TARG) on PPC64
534  GNU/Linux.
535 
536  Usually a function pointer's representation is simply the address
537  of the function. On GNU/Linux on the PowerPC however, a function
538  pointer may be a pointer to a function descriptor.
539 
540  For PPC64, a function descriptor is a TOC entry, in a data section,
541  which contains three words: the first word is the address of the
542  function, the second word is the TOC pointer (r2), and the third word
543  is the static chain value.
544 
545  Throughout GDB it is currently assumed that a function pointer contains
546  the address of the function, which is not easy to fix. In addition, the
547  conversion of a function address to a function pointer would
548  require allocation of a TOC entry in the inferior's memory space,
549  with all its drawbacks. To be able to call C++ virtual methods in
550  the inferior (which are called via function pointers),
551  find_function_addr uses this function to get the function address
552  from a function pointer.
553 
554  If ADDR points at what is clearly a function descriptor, transform
555  it into the address of the corresponding function, if needed. Be
556  conservative, otherwise GDB will do the transformation on any
557  random addresses such as occur when there is no symbol table. */
558 
559 CORE_ADDR
561  CORE_ADDR addr,
562  struct target_ops *targ)
563 {
564  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
565  struct target_section *s = target_section_by_addr (targ, addr);
566 
567  /* Check if ADDR points to a function descriptor. */
568  if (s && strcmp (s->the_bfd_section->name, ".opd") == 0)
569  {
570  /* There may be relocations that need to be applied to the .opd
571  section. Unfortunately, this function may be called at a time
572  where these relocations have not yet been performed -- this can
573  happen for example shortly after a library has been loaded with
574  dlopen, but ld.so has not yet applied the relocations.
575 
576  To cope with both the case where the relocation has been applied,
577  and the case where it has not yet been applied, we do *not* read
578  the (maybe) relocated value from target memory, but we instead
579  read the non-relocated value from the BFD, and apply the relocation
580  offset manually.
581 
582  This makes the assumption that all .opd entries are always relocated
583  by the same offset the section itself was relocated. This should
584  always be the case for GNU/Linux executables and shared libraries.
585  Note that other kind of object files (e.g. those added via
586  add-symbol-files) will currently never end up here anyway, as this
587  function accesses *target* sections only; only the main exec and
588  shared libraries are ever added to the target. */
589 
590  gdb_byte buf[8];
591  int res;
592 
593  res = bfd_get_section_contents (s->the_bfd_section->owner,
594  s->the_bfd_section,
595  &buf, addr - s->addr, 8);
596  if (res != 0)
597  return extract_unsigned_integer (buf, 8, byte_order)
598  - bfd_section_vma (s->bfd, s->the_bfd_section) + s->addr;
599  }
600 
601  return addr;
602 }
603 
604 /* A synthetic 'dot' symbols on ppc64 has the udata.p entry pointing
605  back to the original ELF symbol it was derived from. Get the size
606  from that symbol. */
607 
608 void
609 ppc64_elf_make_msymbol_special (asymbol *sym, struct minimal_symbol *msym)
610 {
611  if ((sym->flags & BSF_SYNTHETIC) != 0 && sym->udata.p != NULL)
612  {
613  elf_symbol_type *elf_sym = (elf_symbol_type *) sym->udata.p;
614  SET_MSYMBOL_SIZE (msym, elf_sym->internal_elf_sym.st_size);
615  }
616 }
ULONGEST extract_unsigned_integer(const gdb_byte *, int, enum bfd_endian)
Definition: findvar.c:84
bfd_vma CORE_ADDR
Definition: common-types.h:41
#define insn_ds(opcd, rts, ra, d, xo)
Definition: ppc64-tdep.c:38
#define MAX(a, b)
struct m32c_reg * pc
Definition: m32c-tdep.c:111
#define insn_xfx(opcd, rts, spr, xo)
Definition: ppc64-tdep.c:45
struct gdbarch_tdep * gdbarch_tdep(struct gdbarch *gdbarch)
Definition: gdbarch.c:1402
CORE_ADDR ppc64_skip_trampoline_code(struct frame_info *frame, CORE_ADDR pc)
Definition: ppc64-tdep.c:458
static CORE_ADDR ppc64_standard_linkage2_target(struct frame_info *frame, CORE_ADDR pc, unsigned int *insn)
Definition: ppc64-tdep.c:403
CORE_ADDR find_solib_trampoline_target(struct frame_info *frame, CORE_ADDR pc)
Definition: minsyms.c:1394
int ppc_gp0_regnum
Definition: ppc-tdep.h:214
CORE_ADDR ppc_insn_ds_field(unsigned int insn)
Definition: rs6000-tdep.c:6151
static CORE_ADDR ppc64_plt_entry_point(struct gdbarch *gdbarch, CORE_ADDR plt)
Definition: ppc64-tdep.c:56
enum bfd_endian gdbarch_byte_order(struct gdbarch *gdbarch)
Definition: gdbarch.c:1420
CORE_ADDR ppc64_convert_from_func_ptr_addr(struct gdbarch *gdbarch, CORE_ADDR addr, struct target_ops *targ)
Definition: ppc64-tdep.c:560
#define SET_MSYMBOL_SIZE(msymbol, sz)
Definition: symtab.h:375
struct bfd_section * the_bfd_section
Definition: target.h:2262
ULONGEST get_frame_register_unsigned(struct frame_info *frame, int regnum)
Definition: frame.c:1194
int ppc_insns_match_pattern(struct frame_info *frame, CORE_ADDR pc, struct ppc_insn_pattern *pattern, unsigned int *insns)
Definition: rs6000-tdep.c:6112
CORE_ADDR addr
Definition: target.h:2259
void ppc64_elf_make_msymbol_special(asymbol *sym, struct minimal_symbol *msym)
Definition: ppc64-tdep.c:609
static CORE_ADDR ppc64_standard_linkage1_target(struct frame_info *frame, CORE_ADDR pc, unsigned int *insn)
Definition: ppc64-tdep.c:386
bfd_byte gdb_byte
Definition: common-types.h:38
static CORE_ADDR ppc64_standard_linkage4_target(struct frame_info *frame, CORE_ADDR pc, unsigned int *insn)
Definition: ppc64-tdep.c:436
#define insn_d(opcd, rts, ra, d)
Definition: ppc64-tdep.c:32
CORE_ADDR ppc_insn_d_field(unsigned int insn)
Definition: rs6000-tdep.c:6141
struct target_section * target_section_by_addr(struct target_ops *target, CORE_ADDR addr)
Definition: target.c:990
int execution_direction
Definition: infrun.c:7561
ULONGEST read_memory_unsigned_integer(CORE_ADDR memaddr, int len, enum bfd_endian byte_order)
Definition: corefile.c:321
struct gdbarch * get_frame_arch(struct frame_info *this_frame)
Definition: frame.c:2535
static CORE_ADDR ppc64_standard_linkage3_target(struct frame_info *frame, CORE_ADDR pc, unsigned int *insn)
Definition: ppc64-tdep.c:420