kan

including double coset rewriting systems

1.32

16 July 2020

Anne Heyworth

Chris Wensley

Chris Wensley
Email: c.d.wensley@bangor.ac.uk
Homepage: http://pages.bangor.ac.uk/ mas023/
Address: Dr. C.D. Wensley
School of Computer Science
Bangor University
Dean Street
Bangor
Gwynedd LL57 1UT
UK

mailto://c.d.wensley@bangor.ac.uk
http://pages.bangor.ac.uk/~mas023/

kan 2

Abstract

Kan is a GAP package originally implemented in 1996 using the GAP 3 language, to compute induced actions
of categories, when the first author was studying for a Ph.D. in Bangor.

This reduced version only provides functions for the computation of normal forms of representatives of
double cosets of finitely presented groups.

Kan became an accepted GAP package in May 2015.

Bug reports, suggestions and comments are, of course, welcome. Please contact the
last author at c.d.wensley@bangor.ac.uk or submit an issue at the GitHub repository
https://github.com/gap-packages/kan/issues/.

Copyright

© 1996-2019 Anne Heyworth and Chris Wensley

The Kan package is free software; you can redistribute it and/or modify it under the terms of the GNU
General Public License as published by the Free Software Foundation; either version 2 of the License, or (at
your option) any later version.

Acknowledgements

This documentation was prepared using the GAPDoc [LN17] and AutoDoc [GH17] packages.
The procedure used to produce new releases uses the package GitHubPagesForGAP [Horl7] and the
package ReleaseTools.

mailto://c.d.wensley@bangor.ac.uk
https://github.com/gap-packages/kan/issues/

Contents

1 Introduction

2 Double Coset Rewriting Systems
2.1 Rewriting Systems e e e e e e
2.2 Example 2 — free product of two cyclicgroups
2.3 Example3 —thetrefoilgroup Lo
2.4 Example 4 — an infinite rewriting systemo . e

3 Development History
3.1 Versionsofthepackage

References

Index

LW O N

p—

17
17
17

19

20

Chapter 1

Introduction

The Kan package started out as part of Anne Heyworth’s thesis [Hey99], and was designed to compute
induced actions of categories (see also [BH00]).

This version of Kan only provides functions for the computation of normal forms of represen-
tatives of double cosets of finitely presented groups, and is made available in support of the paper
[BGHWO06]. Existing methods for computing double cosets in GAP are described in [Lin91].

The package is loaded into GAP with the command
Example

gap> LoadPackage("kan");

The package may be obtained as a compressed tar file kan-version.number.tar.gz by ftp from
one of the following sites:

* the Kan GitHub site: https://github.com/gap-packages.github.io/kan/.
 any GAP archive, e.g. https://www.gap-system.org/Packages/packages.html;

The package also has a GitHub repository at: https://github. com/gap-packages/kan/.

Some of the functions in the Automata package are used to compute word acceptors and regular
expressions for the languages they accept.

The KBMag package is also used to compute a word acceptor of a group G when G has no finite
rewriting system. If KBMag is not available (the user is not on a UNIX system, or the C-programs
have not been compiled), the file dckbmag.gi will not be read, so methods for the functions detailed
in section 2.4.1 will not be available.

Once the package is loaded, it is possible to check the installation is correct by running a test file
of the manual examples with the following command. (The test file itself is tst/fulltest.tst or
tst/parttest.tst, depending whether or not KBMag is available.)

Example

gap> ReadPackage("kan", "tst/testall.g");

#I Testing /Applications/gap/my-dev/pkg/kan/tst/fulltest.tst
#I No errors detected while testing package kan

true

https://github.com/gap-packages.github.io/kan/
https://www.gap-system.org/Packages/packages.html
https://github.com/gap-packages/kan/

kan 5

The information parameter InfoKan takes default value 0. When raised to a higher value, addi-
tional information is printed out.

Once the package is loaded, the manual doc/manual.pdf can be found in the documentation
folder. The html versions, with or without MathJax, may be rebuilt as follows.

Example

gap> InfolLevel(InfoKan);
0
gap> ReadPackage("kan, "makedoc.g");

Please send bug reports, suggestions and other comments to the second author, or use the GitHub
issue tracker at https://github.com/gap-packages/kan/issues/new.

Additional information can be found on the Computational Higher-dimensional Discrete Algebra
website at http://pages.bangor.ac.uk/ mas023/chda/.

https://github.com/gap-packages/kan/issues/new
http://pages.bangor.ac.uk/~mas023/chda/

Chapter 2

Double Coset Rewriting Systems

The Kan package provides functions for the computation of normal forms for double coset represen-
tatives of finitely presented groups. The first version of the package was released to support the paper
[BGHWO06], which describes the algorithms used in this package.

2.1 Rewriting Systems

2.1.1 KnuthBendixRewritingSystem

> KnuthBendixRewritingSystem(grp, gensorder, ordering, alph) (operation)
> ReducedConfluentRewritingSystem(grp, gensorder, ordering, lim, alph) (operation)
> DisplayRwsRules (rws) (operation)

Methods for KnuthBendixRewritingSystem and ReducedConfluentRewritingSystem are
supplied which apply to a finitely presented group. These start by calling IsomorphismFpMonoid
and then work with the resulting monoid. The parameter ordering will normally be "shortlex" or
"wreath", while gensorder is an integer list for reordering the generators, and alph is an alphabet
string used when printing words. A partial rewriting system may be obtained by giving a 1imit to
the number of rules calculated. As usual, A, B denote the inverses of a, b.

We take as an example the fundamental group of the oriented surface of genus 2. The generators
are by default ordered [A,a,B,b,C,c,D,d],sothelistL = [2,1,4,3,6,5,8,7] is used to specify
the order [a,A,b,B,c,C,d,D] to be used with the wreath ordering. Specifying a limit O means that
no limit is prescribed.

The operation DisplayRwsRules prints out the rules using the letters in the given alphabet alph4
rather than using the generators of the monoid.

An additional method for ReducedForm(G, g) is provided for a finitely presented group G with a
rewriting system and an element g of G.

Example

gap> F4 := FreeGroup(4);;

gap> rels := [Comm(F4.1,F4.2) * Comm(F4.3,F4.4) 1;;
gap> H4 := F4/rels;;

gap> L := [2,1,4,3,6,5,8,7];;

gap> order := "wreath";;

gap> alph4 := "aAbBcCdD";;

kan 7

gap> rws4 := ReducedConfluentRewritingSystem(H4, L, order, 0, alph4);;

gap> DisplayRwsRules(rws4);

[[aA, id], [Aa, id], [bB, id 1, [Bb, id 1, [cC, id 1, [Cc, id 1, [dD\
,id 1, [Dd, id 1, [cd, dcBAba 1, [cBAbaD, Dc 1, [CD, BAbaDC 1, [Cd, dABa\
bC 1]

true

gap> a := H4.1;; b := H4.2;; ¢ := H4.3;; d := H4.4;;

gap> ReducedForm(H4, cxd);

fAxf3%xf2~-1xf1~-1*xf2*xf1

2.1.2 NextWord

> NextWord(rws, w, limit) (operation)
> NextWords(rws, w, length, limit) (operation)

The NextWord operation finds the next recognizable word after w using the rewriting system rws.
The third parameter is the maximum number of words that will be tested before giving up. (If no limit
is provided the number 100,000 is used.)

The NextWords operation applies NextWord repeatedly and returns a list of the specified length
of recognizable words. (If, at any stage, the limit is reached, a truncated list is returned.)

Example

gap> free4 := FreeMonoidOfRewritingSystem(rws4);;

gap> gens4 := GeneratorsOfMonoid(free4);

[£f1, f1~-1, f2, f2~-1, £3, £3~-1, f4, f4~-1]

gap> NextWord(rws4, gens4[5]*gens4[7]);

£3*f4~-1

gap> NextWords(rws4, last, 20, 100);

[£3~-1*f1, £3~-1xf1~-1, £3~-1xf2, £3~-1%f2"~-1, £3°-1"2, f4xf1l, f4xf1~-1,
f4x£2, f4*f2°-1, £4x£3, £4x£3~-1, £4°2, f4--1*f1, f4~-1%f1"-1, £4°-1%f2,
f4--1%xf2~-1, £f4~-1%£f3, f4~-1x£3~-1, f4~-1-2, £1°3]

2.2 Example 2 - free product of two cyclic groups

2.2.1 DoubleCosetRewritingSystem

> DoubleCosetRewritingSystem(G, H, K, rws) (function)
> IsDoubleCosetRewritingSystem(dcrws) (property)

A double coset rewriting system for the double cosets H\G/K requires as data a finitely presented
group G; subgroups H, K of G; and a rewriting system rws for G.

A simple example is given by taking G to be the free group on two generators a,b, a cyclic
subgroup H with generator a®, and a second cyclic subgroup K with generator a*. (Similar examples
using different powers of a are easily constructed.) Since gcd (6,4)=2, we have Ha’K = HK, so the
double cosets have representatives [HK, HaK,Ha'ba’K,Ha'bwba’K] where i € [0..5], j € [0..3], and
w is any word in a, b.

kan 8

In the example the free group G is converted to a four generator monoid with relations defining
the inverse of each generator, [[Aa,id], [aA,id], [Bb,id], [bB,id]], where id is the empty word.
The initial rules for the double coset rewriting system comprise those of G plus those given by the
generators of H,K, which are [[Ha®, H], [a*K, K]]. In the complete rewrite system new rules involving
H or K may arise, and there may also be rules involving both H and K.

For this example,

« there are two H-rules, [[Ha*, HA?|,[HA®,Ha%],
« there are two K-rules, [[a*K,AK],[A’K,a*K]],
» and there are two H-K-rules, [[Ha’K,HK|,[HAK,HaK])].

Here is how the computation may be performed.

Example
gap> G1 := FreeGroup(2);;
gap> L1 := [2,1,4,3];;
gap> order := "shortlex";;
gap> alphl := "AaBb";;
gap> rwsl := ReducedConfluentRewritingSystem(G1, L1, order, O, alphl);
Rewriting System for Monoid([f1, f1~-1, £f2, f2°-1], ...) with rules

[[fixf1~-1, <identity ...> 1, [f1~-1xfl, <identity ...>],
[f2xf2~-1, <identity ...>], [£27-1%f2, <identity ...>]]
gap> DisplayRwsRules(rwsl);;
[[Aa, id], [aA, id], [Bb, id I, [bB, id]]
gap> genGl := GeneratorsOfGroup(G1);;
gap> H1 := Subgroup(G1, [genG1[1]1°6 1);;
gap> K1 := Subgroup(G1, [genG1i[1]~4 1);;
gap> dcrwsl := DoubleCosetRewritingSystem(G1, H1, K1, rwsl);;
gap> IsDoubleCosetRewritingSystem(dcrwsl);

true

gap> DisplayRwsRules(dcrwsl);;

G-rules:

[[Aa, id], [aA, id], [Bb, id 1, [bB, id]]
H-rules:

[[Haaaa, HAA],
[HAAA, Haaa]]
K-rules:
[[aaaK, AK],
[AAK, aaK]]
H-K-rules:
[[HaaK, HK 1,
[HAK, Hak]]

An example of obtaining the reduced form of a word using this rewriting system is given in the
following section.

2.2.2 DisplayAsString

> DisplayAsString(word, alph) (operation)

kan 9

This operation displays a double coset using letters of the alphabet obtained by concatenating "HK"
with the alphabet for the monoid obtained above. In the example a double coset w and its reduced form
rw are displayed.

Example

gap> free := FreeMonoidOfRewritingSystem(dcrwsl);;
gap> mon := MonoidOfRewritingSystem(dcrwsl);;
gap> gens := GeneratorsOfMonoid(free);;

gap> H := gens[1];; K := gens[2];;

gap> A := gens[3];; a := gens[4];;

gap> B := gens[5];; b := gens[6];;

gap> alph2 := Concatenation("HK", alphl);
"HKAaBb"

gap> w := H*a"bxb~3*a~bx*K;

ml*m4~5*m6~3*m4~5*m2

gap> DisplayAsString(w, alph2);
HaaaaabbbaaaaaK

gap> rw := ReducedForm(dcrwsl, w);
ml1*m3*m6~3*m4*m2

gap> DisplayAsString(rw, alph2);

HAbbbakK

2.2.3 WordAcceptorOfReducedRws

> WordAcceptorOfReducedRus (rws) (attribute)
> WordAcceptorOfDoubleCosetRws (rws) (attribute)
> IsWordAcceptorOfDoubleCosetRws (aut) (property)

Using functions from the Automata package, we may

* compute a word acceptor for the rewriting system of G;

» compute a word acceptor for the double coset rewriting system;

* test a list of words to see whether they are recognised by the automaton;

* obtain a rational expression for the language of the automaton.

Example

gap> waGl := WordAcceptorOfReducedRws(rwsl);

Automaton("det",6,"aAbB",[[1, 4, 1, 4, 4, 41, [1, 3,3,1,3,31, [1, 2,\
2,2,1,213,[1,1,5,5,5,511,l61,[2,3,4,5,61);;

gap> wadcl := WordAcceptorOfDoubleCosetRws(dcrwsl);

< deterministic automaton on 6 letters with 15 states >

gap> Print(wadcl);

Automaton("det",15,"HKaAbB",[[2, 2, 2, 6, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2],\
[2,2,1,2,1,1,2,1,1,2,2,1,1,2,21, [2, 2, 13, 2, 10, 5, 2, 13,\
2, 7,11, 11, 12, 2, 21, [2, 2, 9, 2, 2, 14, 2, 9, 15, 2, 2, 2, 2, 7, 156],\
[2,2,2,2,8,8,8,8,8,8,8,8,8,8,81, [2, 2,3, 2,3,3,3, 2, 3,\
3,3,3,3,3,311,[41,[1D;;

kan 10

gap> wordsl := ["HK","HaK","HbK","HAK","HaaK","HbbK","HabK","HbaK","HbaabK"];;
gap> validl := List(wordsl, w -> IsRecognizedByAutomaton(wadcl, w));

[true, true, true, false, false, true, true, true, true]

gap> langl := FAtoRatExp(wadcl);

((H(aaaUAA)BUH (a(aBUB)UABUB)) (a(a(aa*BUB)UB)UA (AA*BUB) UB) * (a(a (aa*bUb) Ub) UA (AA\
*bUb)) UH (aaaUAA) bUH (a (abUb) UAbUb)) ((a(a(aa*BUB)UB)UA (AA*BUB)) (a(a(aa*BUB)UB)UA\
(AA*BUB)UB) * (a(a(aa*bUb)Ub) UA (AA*bUb)) Ua (a(aa*bUb) Ub) UA (AA*xbUb) Ub) * ((a(a (aa*xBU\
B)UB)UA (AA*BUB)) (a(a(aa*BUB)UB)UA (AA*BUB) UB) * (a (aKUK) UAKUK) Ua (aKUK) UAKUK) U (H(a\
aaUAA)BUH (a(aBUB)UABUB)) (a(a(aa*xBUB)UB)UA (AA*xBUB) UB) * (a (aKUK) UAKUK) UH (aKUK)

2.3 Example 3 - the trefoil group

2.3.1 PartialDoubleCosetRewritingSystem

> PartialDoubleCosetRewritingSystem(grp, Hgens, Kgens, rws, limit) (operation)
> WordAcceptorOfPartialDoubleCosetRus(grp, prws) (attribute)

It may happen that, even when G has a finite rewriting system, the double coset rewriting system
is infinite. This is the case with the trefoil group 7 with generators [c,d] and relator [¢* = d?] when
the wreath product ordering is used with C > ¢ > D > d. The group itself has a rewriting system with
just 6 rules.

Example

gap> FT := FreeGroup(2);;

gap> relsT := [FT.1°3*FT.2"-2];;
gap> T := FT/relsT;;

gap> genT := Generators0fGroup(T);;
gap> U := Subgroup(T, [genT[1] 1);;
gap> V := Subgroup(T, [genT[2] 1);;
gap> alphT := "cCdD";;

gap> ordT := [3,4,1,2];;
gap> orderT := "wreath";;

gap> rwsT := ReducedConfluentRewritingSystem(T, ordT, orderT, O, alphT);;

gap> DisplayRwsRules(rwsT);;

[[dD, id], [Dd, id 1, [C, cecDD], [ccc, dd 1, [ddc, cdd], [Dc, deDD]\
]

gap> accT := WordAcceptorOfReducedRws(rwsT);

< deterministic automaton on 4 letters with 7 states >

gap> Print("accT = ", accT);

accT = Automaton("det",7,"dDcC",[[6, 2, 2, 4, 6, 4, 6 1, [
31, [7,2,2,2,2,7,561,[2,2,2,2,2,2,2]11,[1
AN DI

gap> langT := FAtoRatExp(accT);

(dcUc) ((cdud) c) * ((cdUd) (dd*Ue) Uc (DD*U@) UDD*U®@) Ud (dd*U@) UDD*U®

3,2,3,2,3, 2,\
1,01, 3, 4, 5, 6\

>

In the following example we reduce the word w = d°¢> to dc?d® and check that only the latter is
recognised by the automaton accT.

kan 11

Example
gap> free := FreeMonoidOfRewritingSystem(rwsT);;
gap> gens := GeneratorsOfMonoid(free);;

gap> ¢ := gens[1];; C := gens[2];; d := gens[3];; D := gens[4];;
gap> w := d~b*c”b;

£f2°5xf1°5

gap> sw := WordToString(w, alphT);
"dddddccccc"

gap> IsRecognizedByAutomaton(accT, sw);
false

gap> rw := ReducedForm(rwsT, w);

f2xf1°2%£276

gap> srw := WordToString(rw, alphT);
"dccdddddd"

gap> IsRecognizedByAutomaton(accT, srw);
true

In earlier versions of Kan, from about 1.01 up to 1.21, the complementary automaton and language
were returned in the example above. This error has now been rectified.

In even earlier versions of Kan (in 0.95 for example) a shorter rational expression for the language
was obtained from Automata. In what follows, we check that the two expressions define the same

language.
Example

gap> alph := AlphabetOfRatExpAsList(langT);;

gap> al := RatExpOnnLetters(alph, [1, [1]);; ## y
gap> a2 := RatExpOnnLetters(alph, [1, [2]);; ## Y
gap> a3 := RatExpOnnLetters(alph, [1, [3]);; ## x
gap> a4 := RatExpOnnLetters(alph, [1, [4]);; ## X
gap> sl := RatExpOnnLetters(alph, "star", al);; ## y*
gap> s2 := RatExpOnnLetters(alph, "star", a2);; ## Yx

gap> ala3 := RatExpOnnLetters(alph, "product", [al, a3]);; ## yx

gap> ul := RatExpOnnLetters(alph, "union", [ala3, a3]);; ## yxUx

gap> a3al := RatExpOnnLetters(alph, "product", [a3, al]);; ## xy

gap> u2 := RatExpOnnLetters(alph, "union", [a3al, al]);; ## xyUy

gap> u2a3 := RatExpOnnLetters(alph, "product", [u2, a3]);; ## (xyUy)x
gap> su2a3 := RatExpOnnLetters(alph, "star", u2a3);; ## ((xyUy)x)*
gap> u2sl := RatExpOnnLetters(alph, "product", [u2, s1]);; ## (xyUy)y*

gap> a3s2 := RatExpOnnLetters(alph, "product", [a3, s2]);; ## x¥*
gap> u3 := RatExpOnnLetters(alph, "union", [u2s1,a3s2,s2]);;

gap> prod := RatExpOnnLetters(alph, "product", [ul,su2a3,u3]);;

gap> alsl RatExpOnnLetters(alph, "product", [al, sl]);; ## yy*
gap> r := RatExpOnnLetters(alph, "union", [prod, alsl, s2]);

(yxUx) ((xyUy) x) * ((xyUy) y*UxY*UY*) Uyy*UY*

gap> AreEquallang(langT, r);

true

If we now take subgroups H = (c¢) and K = (d) we find that the double coset rewriting system has
an infinite number of H-rules. It turns out that only a finite number of these are needed to produce

kan 12

the required automaton. The function PartialDoubleCosetRewritingSystem allows a limit to be
specified on the number of rules to be computed. In the listing below a limit of 20 is used, but in fact
10 is sufficient.

Example

gap> prwsT := PartialDoubleCosetRewritingSystem(T, U, V, rwsT, 20);;

#I WARNING: reached supplied limit 20 on number of rules

gap> DisplayRwsRules(prwsT);

G-rules:

LLC, ccDD], [dD, id], [Dc, deDD], [Dd, id], [ccc, dd 1, [ddec, cdd I\
]

H-rules:
[[Hc, H],
[HD, H4],
[Hdd, H],
[Hdcdd, Hdc 1],
[HdcD, Hdcd],
[Hdcdcdd, Hdcdc 1],
[Hdccdd, Hdcc 1,
[HdccD, Hdccd 1,
[HdcdcD, Hdcdcd 1],
[Hdcdcdcdd, Hdcdcdc],
[Hdcdccdd, Hdcdcc 7,
[Hdccdedd, Hdccdc 1,
[HdccdeDD, Hdccdce]]
K-rules:
[[&K, K 1,
[DK, K11

This list of partial rules is then used to produce a modified word acceptor function.
We then construct the double coset Hd>c’K and find its reduced form (compare this with the
earlier example).

Example

gap> paccT := WordAcceptorOfPartialDoubleCosetRws(T, prwsT);;

< deterministic automaton on 6 letters with 6 states >

gap> Print(paccT, "\n");

Automaton("det",6,"HKyYxX",[[2, 2, 2, 6, 2, 21, [2, 2,1, 2,2,11, [2,\
2,5,2,2,51,[2,2,2,2,2,21,[2,2,6,2,3,21,[2,2,2,2,2,\
211,041,011

gap> plangT := FAtoRatExp(paccT);

H(yx (yx) *x) * (yx (yx) *KUK)

gap> wordsT := ["HK", "HxK", "HyK", "HYK", "HyxK", "HyxxK", "HyyH", "HyxYK"];;
gap> validT := List(wordsT, w -> IsRecognizedByAutomaton(paccT, w));

[true, false, false, false, true, true, false, false]

gap> pfree := FreeMonoidOfRewritingSystem(prwsT);;
gap> pgens := GeneratorsOfMonoid(pfree);;

gap> H := pgens[1];; K := pgens[2];;

gap> c := pgens[3];; C := pgens[4];;

gap> d := pgens[5];; D := pgens[6];;

kan 13

gap> palphT := Concatenation("HK", alphT);

"HKcCdD"
gap> pw := Hxd~5*c~5%K;; DisplayAsString(pw, palphT);
HdddddcccccK

gap> rpw := ReducedForm(prwsT, pw);;

gap> spw := WordToString(rpw, palphT);

"HdccK"

gap> ok := IsRecognizedByAutomaton(paccT, spw);
true

2.4 Example 4 - an infinite rewriting system

24.1 KBMagRewritingSystem

> KBMagRewritingSystem(fpgrp) (attribute)
> KBMagWordAcceptor (fpgrp) (attribute)
> KBMagFSAtoAutomataDFA(fsa, alph) (operation)
> WordAcceptorByKBMag(grp, alph) (operation)
> WordAcceptorByKBMagOfDoubleCosetRus (grp, dcrws) (operation)

When the group G has an infinite rewriting system, the double coset rewriting system will
also be infinite. In this case we may use the function KBMagWordAcceptor which calls KBMag
to compute a word acceptor for G, and KBMagFSAtoAutomataDFA to convert this to a determin-
istic automaton as used by the Automata package. The resulting dfa forms part of the double
coset automaton, together with sufficient H-rules, K-rules and H-K-rules found by the function
PartialDoubleCosetRewritingSystem. (Note that these five attributes and operations will not
be available if the KBMag package has not been loaded.)

In the following example we take a two generator group G4 with relators [a®, 5%, (a x b)?], the
normal forms of whose elements are some of the strings with a or a~! alternating with b or 5~!. The
automatic structure computed by KBMag has a word acceptor with 17 states.

Example

gap> F4 := FreeGroup("a","b");;

gap> rels4 := [F4.1°3, F4.2°3, (F4.1%F4.2)"3];;

gap> G4 := F4/rels4d;;

gap> alph4 := "AaBb";;

gap> waG4 := WordAcceptorByKBMag(G4, alph4);;

gap> Print(waG4, "\n");

Automaton("det",18,"aAbB",[[2, 18, 18, 8, 10, 12, 13, 18, 18, 18, 18, 18, 18\
, 8, 17, 12, 18, 181, [3, 18, 18, 9, 11, 9, 12, 18, 18, 18, 18, 18, 18, 11, \
18, 11, 18, 181, [4, 6, 6, 18, 18, 18, 18, 18, 6, 12, 16, 18, 12, 18, 18, 18\
, 12, 181, [5, 5, 7, 18, 18, 18, 18, 14, 15, 5, 18, 18, 7, 18, 18, 18, 15, 1\
811,011,011 ..171);;

gap> langG4 := FAtoRatExp(waG4);

((abUAb) AUDA) (bA) * (b (aU@) UB(aB) * (a(bU@) UR) UG) U (abUAb) (aU@) U((aBUB) (aB) *AUba (Ba\
)*BA) (bA) * (b (aU@)UG) U (aBUB) (aB) * (a(bU@) UR) Uba (Ba) * (BU@) UbUaUA (B (aB) * (a (bU@) UAU\
@)Ue)uae

gap> IsRecognizedByAutomaton(waG4, "Aba");

kan

true
gap> IsRecognizedByAutomaton(waG4, "AbaB");
false

2.4.2 DCrules

> DCrules(dcrws)
> Hrules(dcrws)
> Krules(dcrws)
> HKrules(dcrws)

(operation)
(attribute)
(attribute)
(attribute)

We now take H to be generated by ab and K to be generated by ba. If we specify a limits of

50, 75, 100, 200 for the number of rules in a partial double coset rewrite system, we obtain lists of
H-rules, K-rules and H-K-rules of increasing length. The numbers of states in the resulting automata
also increase. We may deduce by hand (but not computationally — see [BGHWO06]) three infinite sets

of rules and a limit for the automata.

Example

gap> lim := 100;;

gap> genG4 := GeneratorsOfGroup(G4);;

gap> a := genG4[1];; Db := genG4[2];;

gap> H4 := Subgroup(G4, [a*b]);;

gap> K4 := Subgroup(G4, [bxa]);;

gap> rwsG4 := KnuthBendixRewritingSystem(G4, "shortlex", [2,1,4,3], alph4);;
gap> dcrws4 := PartialDoubleCosetRewritingSystem(G4, H4, K4, rwsG4, limit);;
#I using PartialDoubleCosetRewritingSystem with limit 100

#I 51 rules, and 1039 pairs

#I WARNING: reached supplied limit 100 on number of rules

gap> Print(Length(Rules(dcrws4)), " rules found.\n");

101 rules found.

gap> dcaut4 := WordAcceptorByKBMagOfDoubleCosetRws(G4, dcrws4);;

gap> Print("Double Coset Minimalized automaton:\n", dcautd);

Double Coset Minimalized automaton:

Automaton("det",44,"HKaAbB",[[2, 2, 2, 5, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2\
, 2, 2,2\
, 2,21, [02,2,1,2,1,2,1,1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,\
2,2,2,1,2,1,1,2,1,2,1,2,1,2,1,2,1,2,1,2,2,11, [2, 2, 2,\
2, 3,24, 2,2,2,2,2,2,2,2,2,2,2,2,2, 2,43, 2, 43, 2, 27, 2, 2, 2\
, 2, 2,2,2,2,2,2,2,2,2,2,2,2,2,2,21,1[2, 2,2, 2, 44, 3, 29, 2\
, 8, 2, 10, 2, 12, 2, 14, 2, 16, 2, 18, 2, 20, 2, 22, 2, 2, 2, 2, 26, 2, 29, 2\
, 31, 2, 33, 2, 35, 2, 37, 2, 39, 2, 41, 2,21, [2, 2, 2, 2, 21, 2, 2, 28, 2\

, 9, 2, 11, 2, 13, 2, 15, 2, 17, 2, 19, 2, 42, 2, 3, 2, 28, 3, 2, 7, 2, 30, 2,\
32, 2, 34, 2, 36, 2, 38, 2, 40, 2, 2,281, [2,2,2,2,2,2,2,2,2, 2,2\
, 2,2,2,2,2,2,2,2,2,2,2,2,6, 2,25, 25,2,2,2,2,2,2,2,2, 2,\
2,2,2,2,2,2,23,611,041,[1D;;

gap> dclang4 := FAtoRatExp(dcaut4d);;

gap> Print("Double Coset language of acceptor:\n", dclang4, "\n");

Double Coset language of acceptor:
(HbAbAbAbAbADALABUHADL) (Ab) * (A (Ba(Ba) *bKUK) UK) UHbAbLA (bA (bA (bA (bA (bAKUK) UK) UK) UK\
)UK) UH(A (B (aB) * (abUA) KUK) UaKUb (a (Ba) *BA (bA (bA (bA (bA (bA (bA (bA (bA) * (bKUK) UK) UK) U\

kan 15

K) UK) UK) UK) UK) UAK) UK)

gap> ok := DCrules(dcrws4);;

gap> alph4e := dcrws4!.alphabet;;
gap> Print("H-rules:\n"); DisplayAsString(Hrules(dcrws4), alphde, true);
H-rules:

[HB, Ha]

[HaB, Hb]

[Hab, H]

HbAB, HAba]

HbAbAB, HAbAba]

HbAbADbAB, HAbAbAba]

HbAbAbAbLAB, HAbAbAbAba]
HbAbAbAbLALAB, HAbAbAbAbAba]
HbAbAbAbAbALAB, HAbAbAbAbAbAba]

[HbAbAbAbALAbADLAB, HAbAbAbAbAbAbAba]
gap> Print("K-rules:\n"); DisplayAsString(Krules(dcrws4), alphde, true);;
K-rules:

[BK, aK]

[BaK, bK]

[bak, K]

[BAbK, abAK]

[BAbAbK, abAbAK]

[BAbAbADK, abAbADbAK]

[BAbALADADK, abAbAbAbAK]

[BAbAbAbALADK, abAbAbAbALAK]

[BAbAbAbADADLADK, abAbAbAbLAbLADLAK]

[BAbAbAbADADLADALK, abAbAbAbALALADAK]
gap> Print ("HK-rules:\n"); DisplayAsString(HKrules(dcrws4), alphde, true);;
HK-rules:

[HbK, HAK]

[HbAbK, HAbLAK]

[HbAbAbK, HAbADAK]

[HbAbAbAbK, HAbADADLAK]

[HbAbAbAbADLK, HAbAbLADLADLAK]

[HbAbAbAbALALK, HALAbALADLADLAK]

[HbAbAbAbAbLAbALK, HAbLAbALALALADAK]

L T e Y s T e B e B |

2.4.3 WordToString

> WordToString(word, alph) (operation)
> IdentityDoubleCoset(dcrws) (operation)

The NextWord operation (see 2.1.2) may be used to find normal forms of increasing length for
double coset representatives. In the example below a limit of 50,000 (for the number of words tested)
is specified since the 29 numbers of words tested can be shown to be:

[1,1,6,9,12, 4,91, 12, 153, 12, 192, 52, 1435, 192, 12, 2457, 192,
12, 3072, 820, 22939, 3072, 19, 12, 39321, 3072, 192, 12, 49152]

kan

Example

16

gap> idc := IdentityDoubleCoset(dcrws4);

ml*m2

gap> ## List of the next 29 normal forms for double cosets:

gap> L4 := NextWords(dcrws4, idc, 29, 50000);;

gap> DisplayAsString(L4, alphde, true);

[HAK, HaK, HAbK, HbAK, HABAK, HAbAK, HABabK, HAbAbK, HbAbAK, HbaBAK, HABaBAK,\
HAbAbAK, HABaBabK, HAbABabK, HAbAbADK, HbAbAbAK, HbaBAbAK, HbaBaBAK, HABaBaBA\
K, HAbAbAbAK, HABaBaBabK, HAbABaBabK, HAbAbABabK, HAbAbAbALK, HbAbAbALAK, HbaB\
AbAbAK, HbaBaBAbAK, HbaBaBaBAK, HABaBaBaBAK]

gap> w := NextWord(dcrws4, L4[29]);;

gap> Print(w, "\n");

ml* (m3*m6) ~4*m3*m2

gap> s := WordToString(w, alphde);;

gap> Print(s, "\n");

HAbAbAbLAbLAK

Chapter 3

Development History

3.1 Versions of the package

The first version of the package, written for GAP 3, formed part of Anne Heyworth’s thesis [Hey99]
in 1999, but was not made generally available.

Version 0.91 was prepared to run under GAP 4.4.6, in July 2005.

Version 0.94 differed in two significant ways.

 The manual was produced using the GAPDoc package.

e The test file kan/tst/kan_manual.tst set the AssertionLevel to O to avoid recursion in the
Automata package.

Version 1.11, of December 2014 was required when the Kan website moved yet again. At the
same time a bitbucket repository for the package was started.

Kan became an accepted GAP package in May 2015.

Version 1.28, of May 2017, saw a great many changes to the examples, with the various rewriting
systems used to perform reduction of words to reduced form.

3.2 What needs doing next?

There are too many items to list here, but some of the most important are as follows.
* Implement iterators and enumerators for double cosets.

* At present the methods for DoubleCosetsNC and RightCosetsNC in this package return au-
tomata, rather than lists of cosets or coset enumerators. This needs to be fixed.

* Provide methods for operations such as DoubleCosetRepsAndSizes.

* Convert the rest of the original GAP 3 version of Kan to GAP 4.

3.2.1 DoubleCosetsAutomaton

> DoubleCosetsAutomaton(G, U, V) (operation)
> RightCosetsAutomaton(G, V) (operation)

17

kan 18

Alternative methods for DoubleCosetsNC(G,U,V) and RightCosetsNC(G,V) should be pro-
vided in the cases where the group G has a rewriting system or is known to be infinite. At present the
functions RightCosetsAutomaton and DoubleCosetsAutomaton return minimized automata, and
Iterators for these are not yet available.

Example

gap> F := FreeGroup(2);;

gap> rels := [F.272, (F.1xF.2)"2];;

gap> G5 := F/rels;;

gap> genG5 := GeneratorsOfGroup(G5);;

gap> a := genG5[1]; b := genG5[2];;

gap> U := Subgroup(G5, [a~2]);;

gap> V := Subgroup(G5, [b]);;

gap> L := [2,1,4,3];;

gap> rwsb := ReducedConfluentRewritingSystem(G5, L, "shortlex", 0, "aAbB");;
gap> dcb5 := DoubleCosetsAutomaton(G5, U, V);;

gap> Print(dcb);

Automaton("det",5,"HKAaBb",[[2, 2, 2, 5, 21, [2, 2, 1, 2, 1
2,31, [02,2,2,2,21,1[02,2,2,2,21,10[2,2,2,2,2]1]
gap> rcb := RightCosetsAutomaton(G5, V);;

gap> Print(rch);

Automaton("det",6,"HKAaBb",[[2, 2, 2, 6, 2, 21, [2, 2,1, 2,1, 11, [2,\
2,3,2,2,31,[2,2,2,2,5,51,1[2,2,2,2,2,21,1[2,2,2,2,2,\
211,041,011 1);;

], [2, 2’ 2’\
1,0471,01 D\

References

[BGHWO06] R. Brown, N. Ghani, A. Heyworth, and C. D. Wensley. String rewriting systems for

[BHOO]

[GH17]

[Hey99]

[Horl7]

[Lin91]

[LN17]

double coset systems. J. Symbolic Comput., 41:573-590, 2006. 4, 6, 14

R. Brown and A. Heyworth. Using rewriting systems to compute left kan extensions and
induced actions of categories. J. Symbolic Comput., 29:5-31, 2000. 4

S. Gutsche and M. Horn. AutoDoc - Generate documentation from GAP source code
(Version 2017.09.15), 2017. GAP package, https://github.com/gap-packages/
AutoDoc. 2

A. Heyworth. Applications of Rewriting Systems and Groebner Bases to Com-
puting Kan Extensions and Identities Among Relations. PhD thesis, University of
Wales, Bangor, 1999. http://www.maths.bangor.ac.uk/research/ftp/theses/
heyworth.ps.gz. 4, 17

M. Horn. GitHubPagesForGAP - Template for easily using GitHub Pages within GAP
packages (Version 0.2), 2017. GAP package, https://gap-system.github.io/
GitHubPagesForGAP/. 2

S. Linton. Double coset enumeration. J. Symbolic Comput., 12:415-426, 1991. 4

F. Liibeck and M. Neunhoffer. GAPDoc (version 1.6). RWTH Aachen, 2017. GAP pack-
age, http://www.math.rwth-aachen.de/ Frank.Luebeck/GAPDoc/index.html.
2

19

https://github.com/gap-packages/AutoDoc
https://github.com/gap-packages/AutoDoc
http://www.maths.bangor.ac.uk/research/ftp/theses/heyworth.ps.gz
http://www.maths.bangor.ac.uk/research/ftp/theses/heyworth.ps.gz
https://gap-system.github.io/GitHubPagesForGAP/
https://gap-system.github.io/GitHubPagesForGAP/
http://www.math.rwth-aachen.de/~Frank.Luebeck/GAPDoc/index.html

Index

DCrules, 14

DisplayAsString, 8
DisplayRwsRules, 6
DoubleCosetRewritingSystem, 7
DoubleCosetsAutomaton, 17

example — free product, 7
example — infinite rws, 13
example — trefoil group, 10

HKrules, 14
Hrules, 14

IdentityDoubleCoset, 15
IsDoubleCosetRewritingSystem, 7
IsWordAcceptorOfDoubleCosetRws, 9

KBMagFSAtoAutomataDFA, 13
KBMagRewritingSystem, 13
KBMagWordAcceptor, 13
KnuthBendixRewritingSystem, 6
Krules, 14

NextWord, 7
NextWords, 7

PartialDoubleCosetRewritingSystem, 10

ReducedConfluentRewritingSystem, 6
ReducedForm, 6
RightCosetsAutomaton, 17

trefoil group, 10

WordAcceptorByKBMag, 13
WordAcceptorByKBMagOfDoubleCosetRus, 13
WordAcceptorOfDoubleCosetRws, 9
WordAcceptorO0fPartialDoubleCosetRws, 10
WordAcceptorOfReducedRws, 9
WordToString, 15

20

	Introduction
	Double Coset Rewriting Systems
	Rewriting Systems
	Example 2 – free product of two cyclic groups
	Example 3 – the trefoil group
	Example 4 – an infinite rewriting system

	Development History
	Versions of the package
	What needs doing next?

	References
	Index

