Wedderga

Wedderburn Decomposition of Group
Algebras

Version 4.10.0

14 May 2020

Gurmeet Kaur Bakshi
Osnel Broche Cristo
Allen Herman
Alexander Konovalov
Sugandha Maheshwary
Aurora Olivieri
Gabriela Olteanu
Angel del Rio
Inneke Van Gelder

Wedderga

Gurmeet Kaur Bakshi Email: gkbakshi@pu.ac.in

Address: Center for Advanced Study in Mathematics,
Panjab University, Chandigarh, PIN-160014, India

Osnel Broche Cristo Email: osnel@ufla.br

Address: Departamento de Ciéncias Exatas, Universidade Federal
de Lavras - UFLA, Campus Universitario - Caixa Postal
3037, 37200-000, Lavras - MG, Brazil

Allen Herman Email: aherman@math.uregina.ca

Homepage: http://www.math.uregina.ca/~aherman/

Address: Department of Mathematics and Statistics,
University of Regina,
3737 Wascana Parkway,
Regina, SK, SOG 0EO, Canada

Alexander Konovalov Email: alexk@mcs.st-andrews.ac.uk
Homepage: http://www.cs.st-andrews.ac.uk/ alexk/
Address: School of Computer Science, University of St Andrews
Jack Cole Building, North Haugh,
St Andrews, Fife, KY16 9SX, Scotland
Sugandha Maheshwary Email: sugandha@iisermohali.ac.in
Address: Department of Mathematical Sciences
Indian Institute of Science Education and Research
Mohali, Knowledge city, Sector 81, SAS Nagar,
Manauli, PO 140306, India
Aurora Olivieri Email: olivieriQusb.ve

Address: Departamento de Matematicas
Universidad Simoén Bolivar
Apartado Postal 89000, Caracas 1080-A, Venezuela

Gabriela Olteanu Email: gabriela.olteanu@econ.ubbcluj.ro

Homepage: http://math.ubbcluj.ro/~olteanu

Address: Department of Statistics-Forecasts-Mathematics
Faculty of Economics and Business Administration
Babes-Bolyai University
Str. T. Mihali 58-60, 400591 Cluj-Napoca, Romania

Angel del Rio Email: adelrioQum.es

Homepage: http://www.um.es/adelrio

Address: Departamento de Matematicas, Universidad de Murcia
30100 Murcia, Spain

Inneke Van Gelder Email: ivgelder@vub.ac.be

Homepage: http://homepages.vub.ac.be/ ivgelder

Address: Vrije Universiteit Brussel, Departement Wiskunde
Pleinlaan 2
1050 Brussels, Belgium

mailto://gkbakshi@pu.ac.in
mailto://osnel@ufla.br
mailto://aherman@math.uregina.ca
http://www.math.uregina.ca/~aherman/
mailto://alexk@mcs.st-andrews.ac.uk
http://www.cs.st-andrews.ac.uk/~alexk/
mailto://sugandha@iisermohali.ac.in
mailto://olivieri@usb.ve
mailto://gabriela.olteanu@econ.ubbcluj.ro
http://math.ubbcluj.ro/~olteanu
mailto://adelrio@um.es
http://www.um.es/adelrio
mailto://ivgelder@vub.ac.be
http://homepages.vub.ac.be/~ivgelder

Wedderga 2

Abstract

“Wedderga” stands for “WEDDERburn decomposition of Group Algebras". This is a GAP package to com-
pute the simple components of the Wedderburn decomposition of semisimple group algebras of finite groups
over finite fields and over subfields of finite cyclotomic extensions of the rationals. It also contains functions
that produce the primitive central idempotents of semisimple group algebras and a complete set of orthogonal
primitive idempotents. Other functions of Wedderga allow to construct crossed products over a group with
coefficients in an associative ring with identity and the multiplication determined by a given action and twisting.

Copyright

© 2006-2020 by Gurmeet Kaur Bakshi, Osnel Broche Cristo, Allen Herman, Alexander Konovalov, Sugandha
Maheshwary, Aurora Olivieri, Gabriela Olteanu, Angel del Rio and Inneke Van Gelder.

Wedderga is free software; you can redistribute it and/or modify it under the terms of the GNU General
Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option)
any later version. For details, see the FSF’s own site http://www.gnu.org/licenses/gpl.html.

If you obtained Wedderga, we would be grateful for a short notification sent to one of the authors. If you
publish a result which was partially obtained with the usage of Wedderga, please cite it in the following form:

G. K. Bakshi, O. Broche Cristo, A. Herman, A. Konovalov, S. Maheshwary, A. Olivieri, G. Olteanu, A.
del Rio and I. Van Gelder. Wedderga — Wedderburn Decomposition of Group Algebras, Version 4.10.0; 2020
(http://www.cs.st-andrews.ac.uk/ alexk/wedderga).

Acknowledgements

We all are very grateful to Steve Linton for communicating the package and to the referee for careful testing
Wedderga and useful suggestions. Also we acknowledge very much the members of the GAP team: Thomas
Breuer, Alexander Hulpke, Frank Liibeck and many other colleagues for helpful comments and advise. We
would like also to thank Thomas Breuer for the code of PrimitiveCentralIdempotentsByCharacterTable
for rational group algebras.

We gratefully acknowledge the support of Wedderga development by the following institutions:

* University of Murcia;

* Francqui Stichting grant ADSI107;

* M.E.C. of Romania (CEEX-ET 47/2006);

* D.G.I of Spain;

* Fundacién Séneca of Murcia;

¢ CAPES and FAPESP of Brazil;

¢ Research Foundation Flanders (FWO - Vlaanderen);
* CCP CoDiMa (EP/M022641/1);

* Department of Science and Technology (DST), India.

http://www.gnu.org/licenses/gpl.html
http://www.cs.st-andrews.ac.uk/~alexk/wedderga

Wedderga

Contents

1 Introduction
1.1 General aims of Weddergapackage
1.2 Installation and system requirements oL
1.3 Main functions of Weddergapackage

2 Wedderburn decomposition
2.1 Wedderburn decomposition of a group algebra
22 Simplequotients L. e

3 Shoda pairs
3.1 Computing extremely strong Shodapairs.
3.2 Computing strong Shoda pairs Lo
3.3 Properties related with Shoda pairs

4 Idempotents
4.1 Computing idempotents from charactertable
4.2 Testing lists of idempotents for completeness
4.3 Idempotents from Shodapairs,
4.4 Complete set of orthogonal primitive idempotents from Shoda pairs and cyclotomic
Classes

5 Crossed products and their elements
5.1 Construction of crossed products
5.2 Crossed product elements and their properties

6 Useful properties and functions
6.1 Semisimple group algebras of finite groups
6.2 Operations with group rings elements
6.3 Cyclotomicclasses e
6.4 Othercommands e

7 Functions for calculating Schur indices and identifying division algebras
7.1 Main Schur Index and Division Algebra Functions
7.2 Cyclotomic Reciprocity Functions
7.3 Global Splitting and Character Descent Functions
7.4 Local index functions for Cyclic Cyclotomic Algebras
7.5 Local index functions for Non-Cyclic Cyclotomic Algebras

~N NN

o

14

17
17
18
18

21
21
21
22

25

27
27
34

35
35
37
38
39

Wedderga

7.6 Local index functions for Rational Quaternion Algebras
7.7 Functions involving Cyclic Algebras

8 Applications of the Wedderga package

8.1 Coding theory applications .

9 The basic theory behind Wedderga
9.1 Groupringsand groupalgebras. o

9.2 Semisimple group algebras .
9.3 Wedderburn components . .

9.4 Characters and primitive central idempotents
9.5 Central simple algebras and Brauer equivalence

9.6 Crossed Products
9.7 Cyclic Crossed Products . .
9.8 Abelian Crossed Products . .
9.9 Classical crossed products .
9.10 Cyclic Algebras
9.11 Cyclotomic algebras

9.12 Numerical description of cyclotomic algebras
9.13 Idempotents given by subgroupso

9.14 Shoda pairs of a group . . .
9.15 Strong Shoda pairs of a group

9.16 Extremely strong Shoda pairsofagroup
9.17 Strongly monomial characters and strongly monomial groups
9.18 Normally monomial characters and normally monomial groups
9.19 Cyclotomic Classes and Strong Shoda Pairs
9.20 Theory for Local Schur Index and Division Algebra Part Calculations
9.21 Obtaining Algebras with structure constants as terms of the Wedderburn decomposi-

tion

9.22 A complete set of orthogonal primitive idempotents

9.23 Applications to coding theory
References

Index

53
55

58
58

60
60
60
60
61
62
62
63
64
64
64
65
65
66
66
66
67
68
68
69
70

71
72
73

75

76

Chapter 1

Introduction

1.1 General aims of Wedderga package

The title “Wedderga” stands for “WEDDERburn decomposition of Group Algebras”. This is a GAP
package to compute the simple components of the Wedderburn decomposition of semisimple group
algebras. So the main functions of the package returns a list of simple algebras whose direct sum is
isomorphic to the group algebra given as input.

The method implemented by the package produces the Wedderburn decomposition of a group
algebra F'G provided G is a finite group and F is either a finite field of characteristic coprime to the
order of G, or an abelian number field (i.e. a subfield of a finite cyclotomic extension of the rationals).

Other functions of Wedderga compute the primitive central idempotents of semisimple group
algebras and a complete set of orthogonal primitive idempotents, and calculate Schur indices of simple
algebras.

The package also provides functions to construct crossed products over a group with coefficients
in an associative ring with identity and the multiplication determined by a given action and twisting.

Furhermore, the package provides functions to create code words from a group ring element.

1.2 Installation and system requirements

Wedderga does not use external binaries and, therefore, works without restrictions on the type of the
operating system. It is designed for GAP4.4 and no compatibility with previous releases of GAP4 is
guaranteed.

To use the Wedderga online help it is necessary to install the GAP4 package GAP-
Doc by Frank Liibeck and Max Neunhoffer, which is available from the GAP site or from
http://www.math.rwth-aachen.de/ Frank.Luebeck/GAPDoc/.

Wedderga is distributed in standard formats (tar.gz, tar.bz2, -win.zip) and can be obtained
from https://gap-packages.github.io/wedderga/. To install Wedderga, unpack its archive
into the pkg subdirectory of your GAP installation.

When you don’t have access to the directory of your main GAP installation, you can also install
the package outside the GAP main directory by unpacking it inside a directory MYGAPDIR/pkg. Then
to be able to load Wedderga you need to call GAP with the -1 " ;MYGAPDIR" option.

Installation using other archive formats is performed in a similar way.

If the package is installed correctly, it should be loaded as follows:

http://www.math.rwth-aachen.de/~Frank.Luebeck/GAPDoc/
https://gap-packages.github.io/wedderga/

Wedderga 7

Example

gap> LoadPackage("wedderga");
Loading Wedderga 4.9.0 (Wedderga)
by Gurmeet Kaur Bakshi (gkbakshi@pu.ac.in),
Osnel Broche Cristo (osnel@ufla.br),
Allen Herman (aherman@math.uregina.ca),
Alexander Konovalov (https://alexk.host.cs.st-andrews.ac.uk),
Sugandha Maheshwary (sugandha@iisermohali.ac.in),
Gabriela Olteanu (http://math.ubbcluj.ro/~olteanu),
Aurora Olivieri (olivieri@usb.ve),
Angel del Rio (http://www.um.es/adelrio), and
Inneke Van Gelder (http://homepages.vub.ac.be/ ivgelder).
Homepage: https://gap-packages.github.io/wedderga

1.3 Main functions of Wedderga package

The main functions of Wedderga are WedderburnDecomposition (2.1.1) and
WedderburnDecompositionInfo (2.1.2).

WedderburnDecomposition (2.1.1) computes a list of simple algebras such that their direct prod-
uct is isomorphic to the group algebra F'G, given as input. Thus, the direct product of the entries of
the output is the Wedderburn decomposition (9.3) of FG.

If F is an abelian number field then the entries of the output are given as matrix algebras over cy-
clotomic algebras (see 9.11), thus, the entries of the output of WedderburnDecomposition (2.1.1) are
realizations of the Wedderburn components (9.3) of FG as algebras which are Brauer equivalent (9.5)
to cyclotomic algebras (9.11). Recall that the Brauer-Witt Theorem ensures that every simple factor
of a semisimple group ring FG is Brauer equivalent (that is represents the same class in the Brauer
group of its centre) to a cyclotomic algebra ([Yam74]. In this case the algorithm is based on a compu-
tational oriented proof of the Brauer-Witt Theorem due to Olteanu [O1t07] which uses previous work
by Olivieri, del Rio and Simén [OdRS04] (see also [OdRO03]) for rational group algebras of strongly
monomial groups (9.17). The algorithms are also based upon the work of Bakshi and Maheshwary
[BM14] (see also [BM16]) on the rational group algebras of normally monomial groups (9.18).

The Wedderburn components of F'G are also matrix algebras over division rings which are finite
extensions of the field F. If F is finite then by the Wedderburn theorem these division rings are finite
fields. In this case the output of WedderburnDecomposition (2.1.1) represents the factors of F'G as
matrix algebras over finite extensions of the field F.

In theory Wedderga could handle the calculation of the Wedderburn decomposition of group
algebras of groups of arbitrary size but in practice if the order of the group is greater than 5000 then
the program may crash. The way the group is given is relevant for the performance. Usually the
program works better for groups given as permutation groups or pc groups.

Wedderga 8

Example

gap> QG := GroupRing(Rationals, SymmetricGroup(4));
<algebra-with-one over Rationals, with 2 generators>
gap> WedderburnDecomposition(QG) ;
[Rationals, Rationals, <crossed product with center Rationals over CF(
3) of a group of size 2>, (Ratiomals~[3, 3]), (Rationals~[3, 3])]
gap> FG := GroupRing(CF(5), SymmetricGroup(4));
<algebra-with-one over CF(5), with 2 generators>
gap> WedderburnDecomposition(FG);
[CF(5), CF(5), <crossed product with center CF(5) over AsField(CF(5), CF(
15)) of a group of size 2>, (CF(5)~[3, 31), (CF(B)~[3,31)]1]
gap> FG := GroupRing(GF(5), SymmetricGroup(4));
<algebra-with-one over GF(5), with 2 generators>
gap> WedderburnDecomposition(FG);
L CGF(B)~"[1, 1]1), (GFB"[1,11), (GF(B)[2,21]),
(GF(®)~[3,31), (GF(B)"[3,3]1)]1]
gap> FG := GroupRing(GF(5), SmallGroup(24,3));
<algebra-with-one over GF(5), with 4 generators>
gap> WedderburnDecomposition(FG);
L CGF(B®[1,11), (GF(~2)"[1,11), (GF(B)~[2,21]1),
(GF(~2)"[2,21), (GFB)"[3,371)]1

Instead of WedderburnDecomposition (2.1.1), that returns a list of GAP objects,
WedderburnDecompositionInfo (2.1.2) returns the numerical description of these objects.
See Section 9.12 for theoretical background.

Chapter 2

Wedderburn decomposition

2.1 Wedderburn decomposition of a group algebra

2.1.1 WedderburnDecomposition

> WedderburnDecomposition (FG) (attribute)

Returns: A list of simple algebras.

The input FG should be a group algebra of a finite group G over the field F, where F is either an
abelian number field (i.e. a subfield of a finite cyclotomic extension of the rationals) or a finite field of
characteristic coprime with the order of G.

The function returns the list of all Wedderburn components (9.3) of the group algebra FG. If F is
an abelian number field then each Wedderburn component is given as a matrix algebra of a cyclotomic
algebra (9.11). If F is a finite field then the Wedderburn components are given as matrix algebras over

finite fields.
Example

gap> WedderburnDecomposition(GroupRing(GF(5), DihedralGroup(16)));
[(GF(B)~[1,11), CGFBY"[1,11), CGFB[1,11]),
(GF®B)-[1,11), (GFBY"[2,21]1), (GF(G~2)"[2, 21) 1]
gap> WedderburnDecomposition(GroupRing(Rationals, DihedralGroup(16)));
[Rationals, Rationals, Rationals, Rationals, (Rationals~[2, 2]),
<crossed product with center NF(8,[1, 7]) over AsField(NF(8,
[1, 7 1), CF(8)) of a group of size 2>]
gap> WedderburnDecomposition(GroupRing(CF(5), DihedralGroup(16)));
[CF(58), CF(8), CF(5), CF(5), (CF(®)~[2, 21),
<crossed product with center NF(40,[1, 31]) over AsField(NF(40,
[1, 31 1), CF(40)) of a group of size 2>]

The previous examples show that if D¢ denotes the dihedral group of order 16 then the Wedder-
burn decomposition (9.3) of FsD1g, QD16 and Q(&s)D are respectively

FsDe = 4F5 & M>(Fs) @ M (IF»s),

QD16 =4Q o M2(Q) © (K(Es)/K, 1),

Wedderga 10

and

Q(&s)D16 = 4Q(&s) & Ma(Q(Es)) © (F(Ea0)/F 1),

where (K(&)/K,t) is a cyclotomic algebra (9.11) with the centre K = NF(8,[1,7]) = Q(+/2),
(F(&)/F,t) = Q(v/2,&s5) is a cyclotomic algebra with centre F = NF(40,[1,31]) and &, denotes
a n-th root of unity.

Two more examples:
Example

gap> WedderburnDecomposition(GroupRing(Rationals, SmallGroup(48,15)));
[Rationals, Rationals, Rationals, Rationals,
<crossed product with center Rationals over CF(3) of a group of size 2>,
<crossed product with center Rationals over GaussianRationals of a group of \
size 2>, <crossed product with center Rationals over CF(3) of a group of size
2>, <crossed product with center NF(8,[1, 7]) over AsField(NF(8,
[1, 7 1), CF(8)) of a group of size 2>, (CF(3)"[2, 21),
<crossed product with center Rationals over CF(12) of a group of size 4>]
gap> WedderburnDecomposition(GroupRing(CF(3), SmallGroup(48,15)));
[CF(3), CF(3), CF(3), CF(3), (CF(3®"[2, 21),
<crossed product with center CF(3) over AsField(CF(3), CF(
12)) of a group of size 2>, (CF(3)~[2, 2]),
<crossed product with center NF(24,[1, 7]) over AsField(NF(24,
[1, 7 1), CF(24)) of a group of size 2>, (CF(3)~[2, 2 1),
(CF)~[2, 21), (<crossed product with center CF(3) over AsField(CF(
3), CF(12)) of a group of size 2>~[2, 2]) 1]

In some cases, in characteristic zero, some entries of the output of WedderburnDecomposition
(2.1.1) do not provide full matrix algebras over a cyclotomic algebra (9.11), but "fractional matrix
algebras". That entry is not an algebra that can be used as a GAP object. Instead it is a pair formed by
a rational giving the "size" of the matrices and a crossed product. See 9.3 for a theoretical explanation

of this phenomenon. In this case a warning message is displayed.
Example

gap> QG:=GroupRing(Rationals,SmallGroup(240,89));

<algebra-with-one over Rationals, with 2 generators>

gap> WedderburnDecomposition(QG) ;

Wedderga: Warning!!!

Some of the Wedderburn components displayed are FRACTIONAL MATRIX ALGEBRAS!!!

[Rationals, Rationals, <crossed product with center Rationals over CF(
5) of a group of size 4>, (Rationals~[4, 4]), (Rationals~[4, 4]),
(Rationals~[5, 51), (Rationals~[5, 51), (Rationals~[6, 6]),
<crossed product with center NF(12,[1, 11]) over AsField(NF(12,
[1, 11 1), NF(60,[1, 11 1)) of a group of size 4>,
[3/2, <crossed product with center NF(8,[1, 7]) over AsField(NF(8,
[1, 7 1), NF(40,[1, 31])) of a group of size 4>]]

Wedderga 11

2.1.2 WedderburnDecompositionInfo

> WedderburnDecompositionInfo (FG) (attribute)

Returns: A list with each entry a numerical description of a cyclotomic algebra (9.11).

The input FG should be a group algebra of a finite group G over the field F, where F is either an
abelian number field (i.e. a subfield of a finite cyclotomic extension of the rationals) or a finite field of
characteristic coprime to the order of G.

This function is a numerical counterpart of WedderburnDecomposition (2.1.1).

It returns a list formed by lists of lengths 2, 4 or 5.

The lists of length 2 are of the form

[n7F]7

where 7 is a positive integer and F is a field. It represents the n x n matrix algebra M,(F) over the
field F.
The lists of length 4 are of the form

[, F &, [d, e, B,

where F is a field and n,k,d, , B are non-negative integers, satisfying the conditions mentioned in
Section 9.12. It represents the n x n matrix algebra M, (A) over the cyclic algebra

A=F(&)ulEl = E¢u’ = &),

where & is a primitive k-th root of unity.
The lists of length 5 are of the form

[n7F7k7 [di7 o, Bi]?n:b [Yl,]] 1§i<j§m]7

where F is a field and n, k, d;, o, B;, %, j are non-negative integers. It represents the n x n matrix algebra
M, (A) over the cyclotomic algebra (9.11)

A=F (g1, gm | EF =X g4 = EP g1 = EVgig)],

where & is a primitive k-th root of unity (see 9.12).
Example

gap> WedderburnDecompositionInfo(GroupRing(Rationals, DihedralGroup(16)));
[[1, Rationals], [1, Rationals], [1, Ratiomals], [1, Rationals],

[2, Rationals 1, [2, NF(8,[1, 7 1) 11
gap> WedderburnDecompositionInfo(GroupRing(CF(5), DihedralGroup(16)));
[[1,CF()], [1,CF() I, [1, CF()], [1, CF(5) 1, [2, CF(B) 1,

[2, NF(40,[1, 31 1)]]

The interpretation of the previous example gives rise to the following Wedderburn decompositions
(9.3), where Dy is the dihedral group of order 16 and &s is a primitive 5-th root of unity.

QD16 = 4Q& M (Q) &M (Q(V2)).

Q(&5)D16 = 4Q(&s) & Ma(Q(Es)) & Ma(Q(E5,V2)).

Wedderga 12

Example

gap> F:=FreeGroup("a","b");;a:=F.1;;b:=F.2;;rel:=[a"8,a"4%b"~2,b"~-1*axbx*a];;
gap> Q16:=F/rel;; QQ16:=GroupRing(Rationals, Q16);;
gap> QS4:=GroupRing(Rationals, SymmetricGroup(4));;
gap> WedderburnDecomposition(QQ16);
[Rationals, Rationals, Rationals, Rationals, (Rationals~[2, 2]),
<crossed product with center NF(8,[1, 7]) over AsField(NF(8,
[1, 7 1), CF(8)) of a group of size 2>]
gap> WedderburnDecomposition(QS4);
[Rationals, Rationals, <crossed product with center Rationals over CF(
3) of a group of size 2>, (Ratiomals~[3, 3]), (Rationals~[3, 3])]
gap> WedderburnDecompositionInfo(QQ16) ;
[[1, Rationals 1, [1, Rationals], [1, Rationals],
[2, Rationals], [1, NF(8,[1, 71), 8, [2, 7, 41
gap> WedderburnDecompositionInfo(QS4);
[[1, Rationals], [1, Rationals], [2, Rationals], [3, Ratiomals],
[3, Rationals]]

[1, Rationals],
11

In the previous example we computed the Wedderburn decomposition of the rational group algebra
QQ¢ of the quaternion group of order 16 and the rational group algebra QS of the symmetric group
on four letters. For the two group algebras we used both WedderburnDecomposition (2.1.1) and
WedderburnDecompositionInfo (2.1.2).

The output of WedderburnDecomposition (2.1.1) shows that

QQ16 =4Q® M (Q) DA,

QS5 =2Q®2M3(Q) @ B,

where A and B are crossed products (9.6) with coefficients in the cyclotomic fields Q(&g) and Q(&3)
respectively. This output can be used as a GAP object, but it does not give clear information on the
structure of the algebras A and B.

The numerical information displayed by WedderburnDecompositionInfo (2.1.2) means that

A=QUEES = [gler =T =& @ =g = 1],

B=Q(|&=1)[gle* =& =¢"" g’ =1].

Both A and B are quaternion algebras over its centre which is Q(& 4+ &~!) and the former is equal to
Q(v/2) and Q respectively.

In B, one has (g+1)(g— 1) =0, while g is neither 1 nor —1. This shows that B = M,(Q). However
the relation g = —1 in A shows that

A=Q(V2)[i,gli* = g* = —1,ig = —gil

and so A is a division algebra with centre Q(+/2), which is a subalgebra of the algebra of Hamilto-
nian quaternions. This could be deduced also using well known methods on cyclic algebras (see e.g.
[Rei03]).

Wedderga 13

The next example shows the output of WedderburnDecompositionInfo for QG and
Q(&)G, where G = SmallGroup(48,15). The user can compare it with the output of
WedderburnDecomposition (2.1.1) for the same group in the previous section. Notice that the last
entry of the Wedderburn decomposition (9.3) of QG is not given as a matrix algebra of a cyclic algebra.

However, the corresponding entry of Q(&3)G is a matrix algebra of a cyclic algebra.
Example

gap> WedderburnDecompositionInfo(GroupRing(Rationals, SmallGroup(48,15)));
[[1, Rationals], [1, Rationals], [1, Rationals], [1, Rationals],

[2, Rationals], [2, Rationals], [2, Rationals], [2, NF(8,[1, 7 1) 1,

[2, CF(3], [1, Rationals, 12, [[2, 5,31, [2,7,011, [[311]
gap> WedderburnDecompositionInfo(GroupRing(CF(3), SmallGroup(48,15)));
[[1,CF@ 1, [1, CF3 1, [1, CF@ 1, [1, CF 1, [2, CF(3) 1,

(2, CF(3)], [2, CF® 1, [2, NF(24,[1, 71) 1, [2, CF(3) 1,

[2, CF(3 1, [4, CF(3) 11

]

In some cases some of the first entries of the output of WedderburnDecompositionInfo (2.1.2) are
not integers and so the correspoding Wedderburn components (9.3) are given as "fractional matrix alge-
bras" of cyclotomic algebras (9.11). See 9.3 for a theoretical explanation of this phenomenon. In that

case a warning message will be displayed during the first call of WedderburnDecompositionInfo.
Example

gap> QG:=GroupRing(Rationals,SmallGroup(240,89));

<algebra-with-one over Rationals, with 2 generators>

gap> WedderburnDecompositionInfo(QG) ;

Wedderga: Warning!!!

Some of the Wedderburn components displayed are FRACTIONAL MATRIX ALGEBRAS!!!

[[1, Rationals], [1, Rationals], [1, Rationals, 10, [4, 3, 51 1,
[4, Rationals], [4, Rationals], [5, Rationals], [5, Rationals],
[6, Rationals 1, [1, NF(12,[1, 11 1), 10, [4, 3, 51 1,
[3/2, NF(8,[1, 7 1), 10, [4, 3,51 11

The interpretation of the output in the previous example gives rise to the following Wedderburn de-
composition (9.3) of QG for G the small group [240, 89]:

QG = 2Q @ 2M4(Q) ®2M5(Q) & Me(Q) DAGB®C
where
A =Q(&10)[uléio = &ip,u* = —1],
B is an algebra of degree (4 *2)/2 = 4 which is Brauer equivalent (9.5) to
By = @(560)[”7"’56% = 61(?7144 = 66507661)0 = 61017‘}2 =1lvu= uv]?
and C is an algebra of degree (4*2) *3/4 = 6 which is Brauer equivalent (9.5) to

Ci= @(560)[%‘456”0 = 56707”‘4 = 6650756‘}0 = 563017"2 = 1,vu=w).

The precise description of B and C requires the usage of "ad hoc" arguments.

Wedderga 14

2.2 Simple quotients

2.2.1 SimpleAlgebraByCharacter

> SimpleAlgebraByCharacter (FG, chi) (operation)
Returns: A simple algebra.
The first input FG should be a semisimple group algebra (9.2) over a finite group G and the second
input should be an irreducible character of G.
The output is a matrix algebra of a cyclotomic algebras (9.11) which is isomorphic to the unique
Wedderburn component (9.3) A of FG such that x(A) # 0.
Example

gap> A5 := AlternatingGroup(5);
Alt(C [1 ..51)
gap> SimpleAlgebraByCharacter(GroupRing(Rationals , A5) , Irr(A5) [3]);
(NF(5,[1, 4 1)°[3,31]1)
gap> SimpleAlgebraByCharacter(GroupRing(GF(7) , A5) , Irr(A5) [3]);
(GF(7~2)~[3, 31)
gap> G:=SmallGroup(128,100);
<pc group of size 128 with 7 generators>
gap> chi4:=Filtered(Irr(G) ,x->Degree(x)=4);;
gap> List(chi4,x->SimpleAlgebraByCharacter (GroupRing(Rationals,G) ,x));
[(<crossed product with center NF(8,[1, 3 1) over AsField(NF(8,
[1, 31), CF(8)) of a group of size 2>~[2, 2]),
(<crossed product with center NF(8,[1, 3]) over AsField(NF(8,
[1, 3 1), CF(8)) of a group of size 2>"[2, 2]),
(<crossed product with center NF(8,[1, 3]) over AsField(NF(8,
[1, 31), CF(8)) of a group of size 2>~[2, 21),
(<crossed product with center NF(8,[1, 3]) over AsField(NF(8,
[1, 31), CF(8)) of a group of size 2>~[2, 2]) 1]

2.2.2 SimpleAlgebraByCharacterInfo

> SimpleAlgebraByCharacterInfo(FG, chi) (operation)

Returns: The numerical description of the output of SimpleAlgebraByCharacter (2.2.1).

The first input FG is a semisimple group algebra (9.2) over a finite group G and the second input
is an irreducible character of G.

The output is the numerical description 9.12 of the cyclotomic algebra (9.11) which is isomorphic
to the unique Wedderburn component (9.3) A of FG such that x(A) # 0.

See 9.12 for the interpretation of the numerical information given by the output.

Wedderga 15

Example

gap> G:=SmallGroup(128,100);

<pc group of size 128 with 7 generators>

gap> QG:=GroupRing(Rationals,G);

<algebra-with-one over Rationals, with 7 generators>

gap> chid:=Filtered(Irr(G),x->Degree(x)=4);;

gap> List(chi4,x->SimpleAlgebraByCharacterInfo(QG,x));

[[4, NF(8,L1,31)1, [4, NF(8,[1,31) 1, [4,NF@,[1,3D1,
[4, NF(8,[1, 31) 1]

2.2.3 SimpleAlgebraByStrongSP (for rational group algebra)

> SimpleAlgebraByStrongSP(QG, K, H) (operation)
> SimpleAlgebraByStrongSPNC(QG, K, H) (operation)
> SimpleAlgebraByStrongSP(FG, K, H, C) (operation)
> SimpleAlgebraByStrongSPNC(FG, K, H, C) (operation)

Returns: A simple algebra.

In the three-argument version the input must be formed by a semisimple rational group algebra
QG (see 9.2) and two subgroups K and H of G which form a strong Shoda pair (9.15) of G.

The three-argument version returns the Wedderburn component (9.3) of the rational group algebra
QG realized by the strong Shoda pair (X,H).

In the four-argument version the first argument is a semisimple finite group algebra FG, (K,H) is
a strong Shoda pair of G and the fourth input data is either a generating g-cyclotomic class modulo
the index of H in K or a representative of a generating g-cyclotomic class modulo the index of H in K
(see 9.19).

The four-argument version returns the Wedderburn component (9.3) of the finite group algebra FG
realized by the strong Shoda pair (K,H) and the cyclotomic class C (or the cyclotomic class containing
C).

The versions ending in NC do not check if (K,H) is a strong Shoda pair of G. In the four-argument
version it is also not checked whether C is either a generating g-cyclotomic class modulo the index of
H in K or an integer coprime to the index of H in K.
Example

gap> F:=FreeGroup("a","b");; a:=F.1;; b:=F.2;;
gap> G:=F/[a~16, b~2%a~8, b~-1xaxbxa~9];; a:=G.1;; b:=G.2;;
gap> K:=Subgroup(G, [a]);; H:=Subgroup(G,[]1);;

gap> QG:=GroupRing(Rationals, G);;

gap> FG:=GroupRing(GF(7), G);;

gap> SimpleAlgebraByStrongSP(QG, K, H);

<crossed product over CF(16) of a group of size 2>
gap> SimpleAlgebraByStrongSP(FG, K, H, [1,7]);
(GF(M-[2,21)

gap> SimpleAlgebraByStrongSP(FG, K, H, 1);
(GF(M-[2,21)

Wedderga 16

2.2.4 SimpleAlgebraByStrongSPInfo (for rational group algebra)

> SimpleAlgebraByStrongSPInfo(QG, K, H) (operation)
> SimpleAlgebraByStrongSPInfoNC(QG, K, H) (operation)
> SimpleAlgebraByStrongSPInfo(FG, K, H, C) (operation)
> SimpleAlgebraByStrongSPInfoNC(FG, K, H, C) (operation)

Returns: A numerical description of one simple algebra.

In the three-argument version the input must be formed by a semisimple rational group algebra
(9.2) QG and two subgroups K and H of G which form a strong Shoda pair (9.15) of G. It returns the
numerical information describing the Wedderburn component (9.12) of the rational group algebra QG
realized by a the strong Shoda pair (K,H).

In the four-argument version the first input is a semisimple finite group algebra FG, (K,H) is a
strong Shoda pair of G and the fourth input data is either a generating g-cyclotomic class modulo the
index of H in K or a representative of a generating g-cyclotomic class modulo the index of H in K
(9.19). It returns a pair of positive integers [n, r] which represent the n x n matrix algebra over the field
of order r which is isomorphic to the Wedderburn component of FG realized by a the strong Shoda
pair (X,H) and the cyclotomic class C (or the cyclotomic class containing the integer C).

The versions ending in NC do not check if (K,H) is a strong Shoda pair of G. In the four-argument
version it is also not checked whether C is either a generating g-cyclotomic class modulo the index of
H in K or an integer coprime with the index of H in K.
Example

gap> F:=FreeGroup("a","b");; a:=F.1;; b:=F.2;;

gap> G:=F/[a~16, b~2*a~8, b~-1*axb*a~9];; a:=G.1;; b:=G.2;;
gap> K:=Subgroup(G, [al);; H:=Subgroup(G,[]);;

gap> QG:=GroupRing(Rationals, G);;

gap> FG:=GroupRing(GF(7), G);;

gap> SimpleAlgebraByStrongSP(QG, K, H);

<crossed product over CF(16) of a group of size 2>
gap> SimpleAlgebraByStrongSPInfo(QG, K, H);

[1, NF(16,0 1, 71), 16, [[2, 7,811, [11
gap> SimpleAlgebraByStrongSPInfo(FG, K, H, [1,7]);
[2, 7]

gap> SimpleAlgebraByStrongSPInfo(FG, K, H, 1);
[2, 7]

Chapter 3

Shoda pairs

3.1 Computing extremely strong Shoda pairs

3.1.1 ExtremelyStrongShodaPairs

> ExtremelyStrongShodaPairs(G) (attribute)
Returns: A list of pairs of subgroups of the input group.
The input should be a finite group G.
Computes a list of representatives of the equivalence classes of extremely strong Shoda pairs (9.16)

of a finite group G.
Example

gap> ExtremelyStrongShodaPairs(DihedralGroup(32));
[[<pc group of size 32 with 5 generators>,
<pc group of size 32 with 5 generators>],
[<pc group of size 32 with 5 generators>,
Group ([f1*f2xf3xf4*f5, £3, f4, £f5 1) 1],
<pc group of size 32 with 5 generators>, Group([f2, £3, f4, f5 1) 1,
<pc group of size 32 with 5 generators>, Group([f1, £3, f4, f5 1) 1,
Group([f1*f2*f3*xf4*f5, £3, f4, f5 1), Group([fixf2xf4xf5, f4, f5 1)],
Group([f2, £f3, f4, £f5 1), Group([£f5 1) 1,
[Group([f2, £3, f4, £5 1), Group([1) 11
gap> ExtremelyStrongShodaPairs(SL(2,3));
[[sL(2,3), SL(2,3)],
[SL(2,3),
Group([[[Z(3)"0, z(3)~01, [Z(3)-0, Z(3) 11,
[[23, 2301, [Z2(3-0, z(3)~01 1,
[[Z(@3), 0%2(3) 1, [0%Z(3), 2(3) 11 1 1,

[B e B e B |

Group([[[z(3)~0, z(3)~0 1, [Z(3)-0, Z(3) 11,
[[2@), 230171, [230, 23011,
[[Z(3), 0%xZ(3) 1, [0%Z(3), Z(3) 1 1 1D,
Group([L [[0%Z(3), Z(3) 1, [Z(3)~0, 0%Z(3) 1 1,
[[203, 0x2(3) 1, [0%Z(3), Z(3) 11 1) 11
gap> ExtremelyStrongShodaPairs (SymmetricGroup(5)) ;
[[Sym([1..57),Sm([1..571)1,
[Sym([1 ..51), A1tC[1..51)1]1

17

Wedderga 18

3.2 Computing strong Shoda pairs

3.2.1 StrongShodaPairs

> StrongShodaPairs(G) (attribute)
Returns: A list of pairs of subgroups of the input group.
The input should be a finite group G.
Computes a list of representatives of the equivalence classes of strong Shoda pairs (9.15) of a
finite group G.
Example

gap> ssp:=StrongShodaPairs(SymmetricGroup(4));;

gap> Length(ssp);

5

gap> List(ssp,x->List(x,StructureDescription));

[["s4", "s4" 1, ["s4", "A4" 1, ["A4", "C2 x C2" 1, ["D8", "C2 x C2"],
[llD8ll, ncan]]

gap> ssp:=StrongShodaPairs(DihedralGroup(64));;

gap> Length(ssp);

8

gap> List(ssp,x->List(x,StructureDescription));

[["D64", "D64" 1, ["Dé4", "D32"], ["De4", "C32"], ["D64", "D32"],
[l|D32ll , |’D16Il] , [IIC32||’ llC4||] s [|’C32" s ||C2I’] , [||C32|| , "1"]]

3.3 Properties related with Shoda pairs

3.3.1 IsExtremelyStrongShodaPair

> IsExtremelyStrongShodaPair(G, K, H) (operation)

The first argument should be a finite group G, the second one a normal sugroup K of G and the
third one a subgroup of K.

Returns true if (K,H) is an extremely strong Shoda pair (9.16) of G, and false otherwise.
Example

gap> G:=SymmetricGroup(4);; K:=Group((1,3,2,4), (3,4));;
gap> H1:=Group((2,4,3), (1,4)(2,3), (1,3)(2,4));;
gap> H2:=Group((3,4), (1,2)(3,4));;

gap> IsExtremelyStrongShodaPair(G, G, H1);

true

gap> IsExtremelyStrongShodaPair(G, K, H2);

false

gap> IsExtremelyStrongShodaPair(G, G, H2);

false

gap> IsExtremelyStrongShodaPair(G, G, K);

false

Wedderga 19

3.3.2 IsStrongShodaPair

> IsStrongShodaPair(G, K, H) (operation)

The first argument should be a finite group G, the second one a sugroup K of G and the third one a
subgroup of K.
Returns true if (K,H) is a strong Shoda pair (9.15) of G, and false otherwise.

Note that every extremely strong Shoda pair is a strong Shoda pair, but the converse is not true.
Example

gap> G:=SymmetricGroup(4);; K:=Group((1,3,2,4), (3,4));;
gap> H1:=Group((2,4,3), (1,4)(2,3), (1,3)(2,4));;
gap> H2:=Group((3,4), (1,2)(3,4));;

gap> IsStrongShodaPair(G, G, H1);

true

gap> IsExtremelyStrongShodaPair(G, K, H2);

false

gap> IsStrongShodaPair(G, K, H2);

true

gap> IsStrongShodaPair(G, G, K);

false

3.3.3 IsShodaPair

> IsShodaPair(G, K, H) (operation)

The first argument should be a finite group G, the second a subgroup K of G and the third one a
subgroup of K.
Returns true if (K,H) is a Shoda pair (9.14) of G.

Note that every strong Shoda pair is a Shoda pair, but the converse is not true.
Example

gap> G:=AlternatingGroup(5);;

gap> K:=AlternatingGroup(4);;

gap> H := Group((1,2)(3,4), (1,3)(2,4));;
gap> IsStrongShodaPair(G, K, H);

false

gap> IsShodaPair(G, K, H);

true

Wedderga

3.3.4 IsStronglyMonomial

> IsStronglyMonomial(G)

The input G should be a finite group.

20

(operation)

Returns true if G is a strongly monomial (8.17) {inite group.
xample

gap> S4:=SymmetricGroup(4);;
gap> IsStronglyMonomial (S4);
true

gap> G:=SmallGroup(24,3);;
gap> IsStronglyMonomial (G) ;
false

gap> IsMonomial(G);

false

gap> G:=SmallGroup(1000,86);;
gap> IsMonomial(G);

true

gap> IsStronglyMonomial(G);
false

3.3.5 IsNormallyMonomial

> IsNormallyMonomial(G)

The input G should be a finite group.

(operation)

Returns true if G is a finite normally monomial g9.18) group.
Example

gap> D24:=DihedralGroup(24);

<pc group of size 24 with 4 generators>
gap> IsNormallyMonomial (D24) ;

true

gap> G:=SmallGroup(192,1023);

<pc group of size 192 with 7 generators>
gap> IsNormallyMonomial(G) ;

true

gap> G:=SmallGroup(1029,12);

<pc group of size 1029 with 4 generators>
gap> IsNormallyMonomial(G) ;

false

gap> IsStronglyMonomial(G) ;

true

gap> G:=SL(2,3);

SL(2,3)

gap> IsNormallyMonomial (G) ;

false

gap> IsStronglyMonomial(G) ;

false

Chapter 4

Idempotents

4.1 Computing idempotents from character table

4.1.1 PrimitiveCentralldempotentsByCharacterTable

> PrimitiveCentralIldempotentsByCharacterTable (FG) (operation)
Returns: A list of group algebra elements.
The input FG should be a semisimple group algebra.

Returns the list of primitive central idempoEtents ({f FG using the character table of G (9.4).
xample

gap> QS3 := GroupRing(Rationals, SymmetricGroup(3));;

gap> PrimitiveCentralIdempotentsByCharacterTable(QS3);

[(1/6)x(O+(-1/6)*(2,3)+(-1/6)*(1,2)+(1/6)*(1,2,3)+(1/6)*(1,3,2)+(-1/6)*(1,3),
(2/3)%x(O+(-1/3)%(1,2,3)+(-1/3)*(1,3,2), (1/6)x()+(1/6)*(2,3)+(1/6)*(1,2)+(1/

6)*(1,2,3)+(1/6)*(1,3,2)+(1/6)*(1,3) 1

gap> QG:=GroupRing(Rationals , SmallGroup(24,3));

<algebra-with-one over Rationals, with 4 generators>

gap> FG:=GroupRing(CF(3) , SmallGroup(24,3));

<algebra-with-one over CF(3), with 4 generators>

gap> pciQG := PrimitiveCentralldempotentsByCharacterTable(QG);;

gap> pciFG := PrimitiveCentralldempotentsByCharacterTable(FG);;

gap> Length(pciQG);

5

gap> Length(pciFG);

7

4.2 Testing lists of idempotents for completeness

4.2.1 IsCompleteSetOfOrthogonalldempotents
> IsCompleteSet0fOrthogonalIldempotents(R, list) (operation)
The input should be formed by a unital ring R and a list 1ist of elements of R.

Returns true if the list 1ist is a complete list of orthogonal idempotents of R. That is, the output
is true provided the following conditions are satisfied:

21

Wedderga 22

- The sum of the elements of 1ist is the identity of R,

-2 = e, for every ein 1ist and

-ex f=0,if e and f are elements in different positions of 1ist.

No claim is made on the idempotents being central or primitive.

Note that the if a non-zero element ¢ of R appears in two different positions of 1ist then the
output is false, and that the list 1ist must not contain zeroes.
Example

gap> QS5 := GroupRing(Rationals, SymmetricGroup(5));;

gap> idemp := PrimitiveCentralldempotentsByCharacterTable(QS5);;

gap> IsCompleteSetOfOrthogonalldempotents(QS5, idemp);

true

gap> IsCompleteSet0fOrthogonalIdempotents(QS5, [One(QS5) 1);

true

gap> IsCompleteSetOfOrthogonalldempotents(QS5, [One(QS5), One(QS5) 1);
false

4.3 Idempotents from Shoda pairs

4.3.1 PrimitiveCentralldempotentsByESSP

> PrimitiveCentralIldempotentsByESSP(GG) (attribute)
Returns: A list of group algebra elements.
The input QG should be a semisimple rational group algebra of a finite group G.
The output is the list of primitive central idempotents of the group algebra QG realizable by ex-
tremely strong Shoda pairs (9.16) of G.
If the list of primitive central idempotents given by the output is not complete (i.e. if the group G
is not normally monomial (9.18)) then a warning is displayed.
Example

gap> QG:=GroupRing(Rationals, DihedralGroup(16));;
gap> PrimitiveCentralIldempotentsByESSP(QG);
[(1/16)*<identity> of ...+(1/16)*f1+(1/16)*£2+(1/16)*£3+(1/16)*f4+(1/
16) *f1xf2+(1/16) *f1x£3+(1/16) *Ff1*xf4+(1/16) *£2*x£3+(1/16) x£2*xf4+(1/
16) *£3*xf4+(1/16) *F1x£2xf3+(1/16) ¥ 1*x£f2xf4+(1/16) *F1*x£f3*xf4+(1/
16) *£2x£3*f4+(1/16) *f1xf2xf3%f4, (1/16)*<identity> of ...+(-1/16)*f1+(-1/
16)*£2+(1/16) *£3+(1/16) *£f4+(1/16) *f1*x£f2+ (-1/16) *£1x£3+(-1/16) *f1xf4+(-1/
16) *£2x£3+(-1/16) *£2*£4+(1/16) *£3*£4+(1/16) *£1x£2+£3+ (1/16) *£1*xf2+f4+(-1/
16) *xf1xf3*%f4+(-1/16) *£2x£3*f4+(1/16) *F1*x£2xf3*f4,
(1/16) *<identity> of ...+(-1/16)*f1+(1/16)*£2+(1/16)*£3+(1/16)*f4+(-1/
16) *£1*£2+(-1/16) *f1*£3+(-1/16) *£1*£4+(1/16) *£2x£3+(1/16) *£2x£f4+(1/
16) *£3%xf4+(-1/16) *f1%f2%£3+(-1/16) *f 1%f2+f4+(-1/16) *f1x£3x£f4+(1/
16) *£2x£3*x£4+(-1/16) *f 1#£2*%£3*%f4, (1/16)*<identity> of ...+(1/16)*f1+(-1/
16)*£f2+(1/16) *£3+(1/16) *f4+(-1/16) *f1%£2+(1/16) *f1*x£3+(1/16) *f1*f4+(-1/
16) *£2*xf3+(-1/16) *f2xf4+(1/16) *f3*xf4+(-1/16) *f1xf2xFf3+(-1/16) *f1x£2xf4+(1/
16) *f1*£3%f4+(-1/16) *£2xF3*xf4+(-1/16) *f1xf2*xf3*xf4,
(1/4)*<identity> of ...+(-1/4)*£3+(1/4)*f4+(-1/4)*£3*f4,
(1/2)*<identity> of ...+(-1/2)*f4]
gap> QG := GroupRing(Rationals, SmallGroup(24,12));;

Wedderga 23

gap> PrimitiveCentralIldempotentsByESSP(QG);

Wedderga: Warning!!!

The output is a NON-COMPLETE list of prim. central idemp.s of the input!

[(1/24)*<identity> of ...+(1/24)*f1+(1/24)*£2+(1/24)*£3+(1/24)*£f4+(1/
24) *f1#F2+ (1/24) #£1+£3+ (1/24) *£1x£4+(1/24) *£272+(1/24) *£2+£3+(1/
24) *f2+F 4+ (1/24) %£3+£4+ (1/24) x£1x£272+ (1/24) *£ 1+ £2+£3+ (1/24) £ 1+ £2+£4+(1/
24) % 1xf3*xF4+(1/24) *£272x£3+(1/24) *£272xF4+(1/24) £ 2+ £3*xf4+(1/24) *f1*x£2~
2%£3+ (1/24) *£1x£2°2+F4+ (1/24) ¥ £ 1% £ 2+ £3%F4+(1/24) *£2-2+F£3xFf4+(1/24) *f1%x£2~
2x£3*f4, (1/24)*<identity> of ...+(-1/24)*f1+(1/24)*£2+(1/24)*£3+(1/
24) *xf4+(-1/24) *£1x£2+(-1/24) *£ 1% £3+(-1/24) *£1x£4+(1/24) *£2~2+(1/
24) x£2x£3+(1/24) *£2x£4+ (1/24) *£3*£4+(-1/24) *£1%x£272+(-1/24) £ 1x£2x£3+(-1/
24)*xf1*F2xf4+(-1/24) *£1x£3*%£4+(1/24) *£2~2*%£3+(1/24) *£2~2*xf4+(1/
24) *f 24 f3%f4+ (-1/24) *F1%x£2°2%f 3+ (-1/24) *F 1% £ 2~ 2%f4+ (-1/24) *f 1% £ 2% F 3% f4+(1/
24) *£2~2x£3x£4+(-1/24) x£1x£2°2*%£3xf4, (1/6)*<identity> of ...+(-1/12)*£2+(
1/6)*£3+(1/6) *£4+(-1/12) *£272+ (-1/12) *£2+£3+(-1/12) *£2x£4+(1/6) x£3*xf4+(-1/
12) #£272+£3+(-1/12) *£272+F4+(~1/12) *£2*£3*xf4+(-1/12) *£2~2xf3*f4]

4.3.2 PrimitiveCentralldempotentsByStrongSP

> PrimitiveCentralldempotentsByStrongSP(FG) (attribute)

Returns: A list of group algebra elements.

The input FG should be a semisimple group algebra of a finite group G whose coefficient field F
is either a finite field or the field Q of rationals.

If F = Q then the output is the list of primitive central idempotents of the group algebra FG
realizable by strong Shoda pairs (9.15) of G.

If F is a finite field then the output is the list of primitive central idempotents of FG realizable by
strong Shoda pairs (K, H) of G and g-cyclotomic classes modulo the index of H in K (9.19).

If the list of primitive central idempotents given by the output is not complete (i.e. if the group G
is not strongly monomial (9.17)) then a warning is displayed.
Example

gap> QG:=GroupRing(Rationals, AlternatingGroup(4));;

gap> PrimitiveCentralIdempotentsByStrongSP(QG);

[(1/12)x()+(1/12)%(2,3,4)+(1/12)*(2,4,3)+(1/12)*(1,2) (3,4)+(1/12)*(1,2,3)+(1/
12)%(1,2,4)+(1/12)%(1,3,2)+(1/12)*(1,3,4)+(1/12)*(1,3) (2,4) +(1/12) *
(1,4,2)+(1/12)%(1,4,3)+(1/12)*(1,4) (2,3),

(1/6)*x () +(-1/12)*(2,3,4)+(-1/12)*(2,4,3)+(1/6)*(1,2) (3,4)+(-1/12)*(1,2,3) +(
-1/12)%(1,2,4)+(-1/12)*(1,3,2)+(-1/12)*(1,3,4)+(1/6)*(1,3) (2,4)+(-1/12) *
(1,4,2)+(-1/12)%(1,4,3)+(1/6)*(1,4)(2,3),

(3/4)*(O+(-1/4)%(1,2) (3,4)+(-1/4)*(1,3)(2,4)+(-1/4)*(1,4) (2,3)]

gap> QG := GroupRing(Rationals, SmallGroup(24,3));;

gap> PrimitiveCentralIldempotentsByStrongSP(QG);;

Wedderga: Warning!!!

The output is a NON-COMPLETE list of prim. central idemp.s of the input!

gap> FG := GroupRing(GF(2), Group((1,2,3)));;

gap> PrimitiveCentralldempotentsByStrongSP(FG);

[(Z(2)~0)*x()+(Z(2)~0)*(1,2,3)+(Z(2)"0)*(1,3,2),

(Z(2)~0)*(1,2,3)+(2(2)~0)*(1,3,2)]

gap> FG := GroupRing(GF(5), SmallGroup(24,3));;

gap> PrimitiveCentralIldempotentsByStrongSP(FG);;

Wedderga 24

Wedderga: Warning!!!
The output is a NON-COMPLETE list of prim. central idemp.s of the input!

4.3.3 PrimitiveCentralldempotentsBySP

> PrimitiveCentralIldempotentsBySP(QG) (function)

Returns: A list of group algebra elements.

The input should be a rational group algebra of a finite group G.

Returns a list containing all the primitive central idempotents e of the rational group algebra QG
such that y(e) # 0 for some irreducible monomial character x of G.

The output is the list of all primitive central idempotents of QG if and only if G is monomial,
otherwise a warning message is displayed.

Example

gap> QG := GroupRing(Rationals, SymmetricGroup(4));

<algebra-with-one over Rationals, with 2 generators>

gap> pci:=PrimitiveCentralldempotentsBySP(QG);

[(1/24)*()+(1/24)*(3,4)+(1/24)*(2,3)+(1/24)*(2,3,4)+(1/24)*(2,4,3)+(1/24) *
(2,4)+(1/24)*(1,2)+(1/24)*(1,2) (3,4)+(1/24)*(1,2,3)+(1/24) % (1,2,3,4)+(1/
24)%(1,2,4,3)+(1/24)%(1,2,4)+(1/24)*(1,3,2)+(1/24)*(1,3,4,2)+(1/24) *
(1,3)+(1/24)%(1,3,4)+(1/24)*(1,3) (2,4)+(1/24)*(1,3,2,4)+(1/24)*(1,4,3,2)+(
1/24)%(1,4,2)+(1/24)%(1,4,3)+(1/24)*(1,4)+(1/24)*(1,4,2,3)+(1/24)*(1,4)
(2,3), (1/728)*(O)+(-1/24)*(3,4)+(-1/24)*(2,3)+(1/24)*(2,3,4)+(1/24) *
(2,4,3)+(-1/24)%(2,4)+(-1/24)*(1,2)+(1/24)*(1,2) (3,4)+(1/24)*(1,2,3) +(-1/
24)%(1,2,3,4)+(-1/24)%(1,2,4,3)+(1/24)*(1,2,4)+(1/24)*(1,3,2)+(-1/24) *
(1,3,4,2)+(-1/24)*(1,3)+(1/24)*(1,3,4)+(1/24)*(1,3) (2,4)+(-1/24) *
(1,3,2,4)+(-1/24)%(1,4,3,2)+(1/24)*(1,4,2)+(1/24)*(1,4,3)+(-1/24)*(1,4) +(
-1/24)%(1,4,2,3)+(1/24)%(1,4) (2,3), (3/8)*(+(-1/8)*(3,4)+(-1/8)*(2,3)+(
-1/8)%(2,4)+(-1/8)*(1,2)+(-1/8)*(1,2) (3,4)+(1/8)*(1,2,3,4)+(1/8) *
(1,2,4,3)+(1/8)*(1,3,4,2)+(-1/8)*(1,3)+(-1/8)*(1,3) (2,4)+(1/8)*(1,3,2,4) +(
1/8)*(1,4,3,2)+(-1/8)*(1,4)+(1/8)*(1,4,2,3)+(-1/8)*(1,4)(2,3),

(3/8)x()+(1/8)*(3,4)+(1/8)*(2,3)+(1/8)*(2,4)+(1/8)*(1,2)+(-1/8)*(1,2) (3,4) +(
-1/8)%(1,2,3,4)+(-1/8)%(1,2,4,3)+(-1/8)*(1,3,4,2)+(1/8)*(1,3)+(-1/8)*(1,3)
(2,4)+(-1/8)%(1,3,2,4)+(-1/8)*(1,4,3,2)+(1/8)*(1,4)+(-1/8)*(1,4,2,3)+(-1/
8)%(1,4)(2,3), (1/6)*()+(-1/12)*(2,3,4)+(-1/12)*(2,4,3)+(1/6)*(1,2) (3,4)+(
-1/12)%(1,2,3)+(-1/12)*%(1,2,4)+(-1/12)*(1,3,2)+(-1/12)*(1,3,4)+(1/6) *(1,3)
(2,4)+(-1/12)*(1,4,2)+(-1/12)*(1,4,3)+(1/6)*(1,4) (2,3)]

gap> IsCompleteSetOfPCIs(QG,pci);

true

gap> QS5 := GroupRing(Rationals, SymmetricGroup(5));;

gap> pci:=PrimitiveCentralldempotentsBySP(QS5);;

Wedderga: Warning!!

The output is a NON-COMPLETE list of prim. central idemp.s of the input!

gap> IsCompleteSetOfPCIs(QS5 , pci);

false

The output of PrimitiveCentralldempotentsBySP contains the output of
PrimitiveCentralIldempotentsByStrongSP (4.3.2), possibly properly.

Wedderga 25

Example

gap> QG := GroupRing(Rationals, SmallGroup(48,28));;

gap> pci:=PrimitiveCentralldempotentsBySP(QG);;

Wedderga: Warning!!

The output is a NON-COMPLETE list of prim. central idemp.s of the input!
gap> Length(pci);

6

gap> spci:=PrimitiveCentralldempotentsByStrongSP(QG);;

Wedderga: Warning!!!

The output is a NON-COMPLETE list of prim. central idemp.s of the input!
gap> Length(spci);

5

gap> IsSubset(pci,spci);

true

gap> QG:=GroupRing(Rationals,SmallGroup(1000,86)) ;

<algebra-with-one over Rationals, with 6 generators>

gap> IsCompleteSet0fPCIs(QG , PrimitiveCentralIldempotentsBySP(QG));
true

gap> IsCompleteSetOfPCIs(QG , PrimitiveCentralIldempotentsByStrongSP(QG));
Wedderga: Warning!!!

The output is a NON-COMPLETE list of prim. central idemp.s of the input!
false

4.4 Complete set of orthogonal primitive idempotents from Shoda pairs
and cyclotomic classes

4.4.1 PrimitiveldempotentsNilpotent

> PrimitiveldempotentsNilpotent(FG, H, K, C, args) (operation)

Returns: A list of orthogonal primitive idempotents.

The input FG should be a semisimple group algebra of a finite nilpotent group G whose coeffi-
cient field F is a finite field. H and K should form a strong Shoda pair (H,K) of G. args is a list
containing an epimorphism map epi from Ng(K) to Ng(K)/K and a generator gg of H/K. C is the
|F|-cyclotomic class modulo [H : K| (w.r.t. the generator gg of H/K)

The output is a complete set of orthogonal primitive idempotents of the simple algebra
FGec(G,H,K) (9.22).

Example

gap> G:=DihedralGroup(8);;

gap> F:=GF(3);;

gap> FG:=GroupRing(F,G);;

gap> H:=StrongShodaPairs(G) [5] [1];

Group ([f1xf2*xf3, £3 1)

gap> K:=StrongShodaPairs(G) [5] [2];

Group([f1xf2 1)

gap> N:=Normalizer(G,K);

Group([fi1xf2+£f3, £3 1)

gap> epi:=NaturalHomomorphismByNormalSubgroup(N,K) ;

Wedderga 26

[f1xf2xf3, £3] -> [f1, f1]

gap> QHK:=Image (epi,H);

Group([f1, £f1 1)

gap> gq:=MinimalGeneratingSet (QHK) [1];

f1

gap> C:=CyclotomicClasses(Size(F),Index(H,K)) [2];

[1]

gap> PrimitiveIdempotentsNilpotent (FG,H,K,C, [epi,gql);

[(Z(3)~0)*<identity> of ...+(Z(3))*£3+(Z(3)~0)*f1*f2+(Z(3))*f1*f2*£3,
(Z(3)~0)*<identity> of ...+(Z(3))*£3+(Z(3))*£1*£2+(Z(3)~0)*f1*£2+£3]

4.4.2 PrimitiveldempotentsTrivialTwisting

> PrimitiveldempotentsTrivialTwisting(FG, H, K, C, args) (operation)

Returns: A list of orthogonal primitive idempotents.

The input FG should be a semisimple group algebra of a finite group G whose coefficient field F
is a finite field. H and K should form a strong Shoda pair (H,K) of G. args is a list containing an
epimorphism map epi from Ng(K) to Ng(K)/K and a generator gg of H/K. C is the |F|-cyclotomic
class modulo [H : K] (w.r.t. the generator gg of H/K). The input parameters should be such that the
simple component F Gec (G, H,K) has a trivial twisting.

The output is a complete set of orthogonal primitive idempotents of the simple algebra
FGec(G,H,K) (9.22).

Example

gap> G:=DihedralGroup(8);;

gap> F:=GF(3);;

gap> FG:=GroupRing(F,G);;

gap> H:=StrongShodaPairs(G) [5] [1];

Group([fi1xf2+f3, £3 1)

gap> K:=StrongShodaPairs(G) [5] [2];

Group ([f1xf2 1)

gap> N:=Normalizer(G,K);

Group([fi1xf2+f3, £3 1)

gap> epi:=NaturalHomomorphismByNormalSubgroup(N,K) ;

[f1xf2%f3, £3] -> [f1, f1]

gap> QHK:=Image (epi,H);

Group([f1, f1 1)

gap> gq:=MinimalGeneratingSet (QHK) [1];

f1

gap> C:=CyclotomicClasses(Size(F),Index(H,K)) [2];

[1]

gap> PrimitiveIdempotentsTrivialTwisting(FG,H,K,C, [epi,gql);

[(Z(3)~0)*<identity> of ...+(Z(3))*£3+(Z(3)~0)*f1*f2+(Z(3))*f1*f2*£3,
(Z(3)~0)*<identity> of ...+(Z(3))*£3+(Z(3))*£1*£2+(Z(3)~0)*f1*£2*£3]

Chapter 5

Crossed products and their elements

The package Wedderga provides functions to construct crossed products over a group with coeffi-
cients in an associative ring with identity, and with the multiplication determined by a given action
and twisting (see 9.6 for definitions). This can be done using the function CrossedProduct (5.1.1).

Note that this function does not check the associativity conditions, so in fact it is the NC-version
of itself, and its output will be always assumed to be associative. For all crossed products that appear
in Wedderga algorithms the associativity follows from theoretical arguments, so the usage of the
NC-method in the package is safe. If the user will try to construct a crossed product with his own
action and twisting, he/she should check the associativity conditions himself/herself to make sure that
the result is correct.

5.1 Construction of crossed products

5.1.1 CrossedProduct

> CrossedProduct(R, G, act, twist) (attribute)

Returns: Ring in the category IsCrossedProduct.

The input should be formed by:

* an associative ring R,

*a group G,

* a function act (RG, g) of two arguments: the crossed product RG and an element g in G. It must
return a mapping from R to R which can be applied via the "\~" operation, and

* a function twist (RG,g,h) of three arguments: the crossed product RG and a pair of elements
of G. It must return an invertible element of R.

Returns the crossed product of G over the ring R with action act and twisting twist.

The resulting crossed product belongs to the category IsCrossedProduct, which is defined as a
subcategory of IsFLMLORWithOne.

An example of the trivial action:
Example

act := function(RG,a)
return IdentityMapping(LeftActingDomain(RG));
end;

and the trivial twisting:

27

Wedderga 28

Example

twist := function(RG , g, h)
return One(LeftActingDomain(RG));
end;

Let n be a positive integer and &, an n-th complex primitive root of unity. The natural action of the

group of units of Z,, the ring of integers modulo n, on Q(&,) can be defined as follows:
Example

act := function(RG,a)
return ANFAutomorhism(LeftActingDomain(RG) , Int(a));
end;

In the following example one constructs the Hamiltonian quaternion algebra over the rationals as a
crossed product of the group of units of the cyclic group of order 2 over Q(i) = GaussianRationals.
One realizes the cyclic group of order 2 as the group of units of Z /47 and one uses the natural
isomorphism Z /47 — Gal(Q(i)/Q) to describe the action.

Example

gap> R := GaussianRationals;

GaussianRationals

gap> G := Units(ZmodnZ(4));

<group of size 2 with 1 generators>

gap> act := function(RG,g)

> return ANFAutomorphism(LeftActingDomain(RG), Int(g));
> end;

function(RG, g) ... end

gap> twistl := function(RG, g, h)

> if IsOne(g) or IsOne(h) then

> return One(LeftActingDomain(RG));
> else

> return -One(LeftActingDomain(RG));
> fi;

> end;

function(RG, g, h) ... end

gap> RG := CrossedProduct(R, G, act, twistl);
<crossed product over GaussianRationals of a group of size 2>
gap> i := E(4) * One(G) Embedding(G,RG);
(ZmodnZ0Obj(1, 4))*(E(4))

gap> j := ZmodnZ0bj(3,4) Embedding(G,RG) ;
(ZmodnZ0Obj (3, 4))*(1)

gap> 172;

(ZmodnZ0Obj (1, 4))*(-1)

gap> j°2;

(ZmodnZ0bj(1, 4))*(-1)

gap> ikj+j*i;

<zero> of

One can construct the following generalized quaternion algebra with the same action and a different
twisting
Qi jli* = —1,j* = =3, ji=—i))

Wedderga 29

Example

gap> twist2:=function(RG,g,h)
if IsOne(g) or IsOne(h) then

return One(LeftActingDomain(RG));
else

return -3+*0ne(LeftActingDomain(RG));
fi;
end;
function(RG, g, h) ... end
gap> RG := CrossedProduct(R, G, act, twist2);
<crossed product over GaussianRationals of a group of size 2>
gap> i := E(4) * One(G) Embedding(G,RG);
(ZmodnZ0Obj(1, 4))*(E(4))
gap> j := ZmodnZ0bj(3,4) Embedding(G,RG) ;
(ZmodnZ0Obj (3, 4))*(1)
gap> i°2;
(ZmodnZ0bj(1, 4))*(-1)
gap> j72;
(ZmodnZ0bj(1, 4))*(-3)
gap> i*xj+j*i;
<zero> of

>
>
>
>
>
>

The following example shows how to construct the Hamiltonian quaternion algebra over the rationals

using the rationals as coefficient ring and the Klein group as the underlying group.
Example

gap> C2 := CyclicGroup(2);

<pc group of size 2 with 1 generators>
gap> G := DirectProduct(C2,C2);

<pc group of size 4 with 2 generators>
gap> act := function(RG,a)

> return IdentityMapping(LeftActingDomain(RG)) ;
> end;
function(RG, a) ... end

gap> twist := function(RG, g , h)
> local one,gl,g2,h1,h2,G;

> G := UnderlyingMagma(RG);

> one := One(C2);

> gl := Image(Projection(G,1), g);

> g2 := Image(Projection(G,2), g);

> h1l := Image(Projection(G,1), h);

> h2 := Image(Projection(G,2), h);

> if g = One(G) or h = One(G) then return 1;

> elif IsOne(gl) and not IsOne(g2) and not IsOne(hl) and not IsOne(h2)
> then return 1;

> elif not IsOne(gl) and IsOne(g2) and IsOne(hl) and not IsOne(h2)

> then return 1;

> elif not IsOne(gl) and not IsOne(g2) and not IsOne(hl) and IsOne(h2)
> then return 1;

> else return -1;

Wedderga

> fi;

> end;

function(RG, g, h) ... end

gap> HQ := CrossedProduct(Rationals, G, act, twist);
<crossed product over Rationals of a group of size 4>

30

Changing the rationals by the integers as coefficient ring one can construct the Hamiltonian quaternion

ring.

Example

gap> HZ := CrossedProduct(Integers, G, act, twist);
<crossed product over Integers of a group of size 4>
gap> i := Generators0fGroup(G) [1] “Embedding(G,HZ) ;
(f1)=(1)

gap> j := Generators0fGroup(G) [2] “Embedding(G,HZ) ;
(£2)* (1)

gap> i°2;

(<identity> of ...)*(-1)

gap> j©2;

(<identity> of ...)*(-1)

gap> ixj+j*i;

<zero> of

One can extract the arguments used for the construction of the crossed product using the following

attributes:

* LeftActingDomain for the coefficient ring.

* UnderlyingMagma for the underlying group.

* ActionForCrossedProduct for the action.

* TwistingForCrossedProduct for the twisting.
Example

gap> LeftActingDomain(HZ) ;

Integers

gap> G:=UnderlyingMagma (HZ) ;

<pc group of size 4 with 2 generators>

gap> ac := ActionForCrossedProduct (HZ) ;

function(RG, a) ... end

gap> List(G , x -> ac(HZ, x));

[IdentityMapping(Integers), IdentityMapping(Integers),
IdentityMapping(Integers), IdentityMapping(Integers)]

gap> tw := TwistingForCrossedProduct(HZ);

function(RG, g, h) ... end

gap> List(G, x -> List(G , y -> tw(HZ, x, y)));

rrqt,1,14,121, 01, -1, -1,171,01,1,-1,-11,0[01,-1,1, -1711

Some more examples of crossed products arise from the Wedderburn decomposition (9.3) of group

algebras.

Wedderga

Example

31

gap> G := SmallGroup(32,50);

<pc group of size 32 with 5 generators>

gap> A := SimpleAlgebraByCharacter(GroupRing(Rationals,G), Irr(G)[17]) ;

(<crossed product with center Rationals over GaussianRationals of a group of \

size 2>°[2, 2 1)

gap> SimpleAlgebraByCharacterInfo(GroupRing(Rationals,G), Irr(G)[17]) ;

[2, Rationals, 4, [2, 3, 21 1]

gap> B := LeftActingDomain(4);

<crossed product with center Rationals over GaussianRationals of a group of si\

ze 2>

gap> L := LeftActingDomain(B);

GaussianRationals

gap> H := UnderlyingMagma(B);

<group of size 2 with 2 generators>

gap> Elements (H) ;

[ZmodnZObj(1, 4), ZmodnZObj(3, 4) 1]

gap> i := E(4) * One(H) “Embedding(H,B);

(ZmodnZ0bj (1, 4))=*(E(4))

gap> j := ZmodnZ0bj(3,4) Embedding(H,B);

(ZmodnZ0Obj (3, 4))*(1)

gap> i72;

(ZmodnZ0bj(1, 4))*(-1)

gap> j72;

(ZmodnZ0Obj (1, 4))*(-1)

gap> ixj+j*i;

<zero> of

gap> ac := ActionForCrossedProduct(B);

function(RG, a) ... end

gap> tw := TwistingForCrossedProduct(B);

function(RG, a, b) ... end

gap> List(H , x -> ac(B, x));

[IdentityMapping(GaussianRationals), ANFAutomorphism(GaussianRationals,
3)1

gap> List(H , x -> List(H , y -> tw(B, x, y)));

tf1,11, 01, -111

Example

gap> QG:=GroupRing(Rationals, SmallGroup(24,3));;
gap> WedderburnDecomposition(QG) ;
[Rationals, CF(3), (Ratiomnals~[3, 31),

<crossed product with center Rationals over GaussianRationals of a group of \
size 2>, <crossed product with center CF(3) over AsField(CF(3), CF(

12)) of a group of size 2>]

gap> R:=WedderburnDecomposition(QG) [4];
<crossed product with center Rationals over GaussianRationals of a group of si\
ze 2>
gap> IsCrossedProduct(R);
true
gap> IsAlgebra(R);

Wedderga

true
gap> IsRing(R);
true
gap> LeftActingDomain(R);
GaussianRationals
gap> AsList(UnderlyingMagma(R));
[ZmodnZObj(1, 4), ZmodnZObj(3, 4
gap> Print(ActionForCrossedProduct(
function (RG, a)

local <cond, redu;

)]
R)); Print("\n");

cond := OperationRecord(RG).cond;
redu := OperationRecord(RG).redu;
return

ANFAutomorphism(CF(cond), Int(PreImagesRepresentative(redu, a)));
end
gap> Print(TwistingForCrossedProduct(R)); Print("\n");
function (RG, a, b)
local orderroot, cocycle;
orderroot := OperationRecord(RG).orderroot;
cocycle := OperationRecord(RG).cocycle;
return E(orderroot) ~ Int(cocycle(a, b));
end
gap> IsAssociative(R);
true
gap> IsFinite(R);
false
gap> IsFiniteDimensional(R);
true
gap> AsList(Basis(R));
[(ZmodnZ0Obj(1, 4))*(1), (ZmodnZObj(3, 4))*(1)]
gap> GeneratorsOfLeftOperatorRingWithOne(R) ;
[(ZmodnZ0Obj(1, 4))*(1), (ZmodnZ0Obj(3, 4))*(1)]
gap> One(R);
(ZmodnZ0Obj (1, 4))=*(1)
gap> Zero(R);
<zero> of
gap> Characteristic(R);
0
gap> CenterOfCrossedProduct(R);
Rationals

32

The next example shows how one can use CrossedProduct to produce generalized quaternion alge-
bras. Note that one can construct quaternion algebras using the GAP function QuaternionAlgebra.

Example

gap> Quat := function(R,a,b)

> local G,act,twist;

> if not(a in R and b in R and a <> Zero(R) and b <> Zero(R)) then
> Error("<a> and must be non zero elements of <R>!!!");

> fi;

Wedderga

G := SmallGroup(4,2);
act := function(RG,a)
return IdentityMapping(LeftActingDomain(RG));
end;
twist := function(RG, g , h)
local ome,gl,g2;

one := One(®);
gl := G.1;
g2 := G.2;

if g = one or h = one then
return One(R);
elif g = gl then
if h = g2 then
return One(R);
else
return a;
fi;
elif g = g2 then
if h = gl then
return -One(R);
elif h=g2 then

VVVVVVVVVVVVVVVVVVVVVVVVVYVVYVVYVYVYV

return b;
else
return -b;
fi;
else
if h = gl then
return -b;
elif h=g2 then
return b;
else
return -ax*b;
> fi;
> fi;
> end;
> return CrossedProduct(R,G,act,twist);
> end;
function(R, a, b) ... end

gap> HQ := Quat(Rationals,2,3);

<crossed product over Rationals of a group of size 4>
gap> G := UnderlyingMagma (HQ) ;

<pc group of size 4 with 2 generators>
gap> tw := TwistingForCrossedProduct(HQ);
function(RG, g, h) ... end

gap> List(G, x -> List(G, y -> tw(HQ, x, v)));
rc1,1,1,1131,001,3, -1, -31,[1,1,2

’2]’[1’3’_3,_6]]

33

Wedderga 34

5.2 Crossed product elements and their properties

5.2.1 ElementOfCrossedProduct

> ElementOfCrossedProduct (Fam, zerocoeff, coeffs, elts) (property)

Returns the element m * ¢y + ... + my, * ¢, of a crossed product, where elts = [mj,my,...,my,) is
a list of magma elements, coeffs = [c],c2,...,¢y| is a list of coefficients. The output belongs to the
crossed product whose elements lie in the family Fam. The second argument zerocoeff must be
the zero element of the coefficient ring containing coefficients c;, and will be stored in the attribute
ZeroCoefficient of the crossed product element.

The output will be in the category IsElement0fCrossedProduct, which is a subcategory of
IsRingElementWithInverse. It will have the presentation IsCrossedProductObjDefaultRep.

Similarly to magma rings, one can obtain the list of coefficients and elements with
CoefficientsAndMagmaElements .

Also note from the example below and several other examples in this chapter that instead of
ElementOfCrossedProduct one can use Embedding to embed elements of the coefficient ring and

of the underlying magma into the crossed product.
Example

gap> QG := GroupRing(Rationals, SmallGroup(24,3));
<algebra-with-one over Rationals, with 4 generators>

gap> R := WedderburnDecomposition(QG) [4];

<crossed product with center Rationals over GaussianRationals of a group of si\
ze 2>

gap> H := UnderlyingMagma(R);;

gap> fam := ElementsFamily(FamilyObj(R));;

gap> g := ElementOfCrossedProduct(fam, O, [1, E(4)], AsList(H));
(ZmodnZ0bj(1, 4))*(1)+(ZmodnZ0bj(3, 4))*(E(4))

gap> CoefficientsAndMagmaElements(g);

[ZmodnZObj(1, 4), 1, ZmodnZObj(3, 4), E(4)]

gap> t := List(H, x -> x"Embedding(H, R));

[(ZmodnZ0Obj(1, 4))*(1), (ZmodnZ0bj(3, 4))*(1)]

gap> t[1] + t[2]1*E(4);

(ZmodnZ0bj (1, 4))*(1)+(ZmodnZ0bj(3, 4))*(E(4))

gap> g = t[1] + E(4)*t[2];

false

gap> g = t[1] + t[2]*E(4);

true

gap> h := ElementOfCrossedProduct(fam, O, [E(4), 1 1, AsList(H));
(ZmodnZ0bj (1, 4))*(E(4))+(ZmodnZ0bj(3, 4))=*(1)

gap> g+h;

(ZmodnZ0Obj (1, 4))*(1+E(4))+(ZmodnZ0bj(3, 4))*(1+E(4))

gap> g+*E(4);

(ZmodnZ0bj (1, 4))*(E(4))+(ZmodnZ0bj(3, 4))*(-1)

gap> E(4)*g;

(ZmodnZ0bj (1, 4))*(E(4))+(ZmodnZObj(3, 4))=*(1)

gap> g+h;

(ZmodnZ0Obj(1, 4))*(2+E(4))

Chapter 6

Useful properties and functions

6.1 Semisimple group algebras of finite groups

6.1.1 IsSemisimpleZeroCharacteristicGroupAlgebra

> IsSemisimpleZeroCharacteristicGroupAlgebra (KG) (property)

The input must be a group ring.
Returns true if the input KG is a semisimple group algebra (9.2) over a field of characteristic zero

(that is if G is finite), and false otherwise.
Example

gap> CG:=GroupRing(GaussianRationals, DihedralGroup(16));;
gap> IsSemisimpleZeroCharacteristicGroupAlgebra(CG);
true

gap> FG:=GroupRing(GF(2), SymmetricGroup(3));;

gap> IsSemisimpleZeroCharacteristicGroupAlgebra(FG);
false

gap> f := FreeGroup("a");

<free group on the generators [a]>

gap> Qf:=GroupRing(Rationals,f);

<algebra-with-one over Rationals, with 2 generators>
gap> IsSemisimpleZeroCharacteristicGroupAlgebra(Qf);
false

6.1.2 IsSemisimpleRationalGroupAlgebra

> IsSemisimpleRationalGroupAlgebra(KG) (property)

The input must be a group ring.

Returns true if KG is a semisimple rational group algebra (9.2) and false otherwise.
Example

gap> QG:=GroupRing(Rationals, SymmetricGroup(4));;
gap> IsSemisimpleRationalGroupAlgebra(QG);
true

35

Wedderga 36

gap> CG:=GroupRing(GaussianRationals, DihedralGroup(16));;
gap> IsSemisimpleRationalGroupAlgebra(CG);

false

gap> FG:=GroupRing(GF(2), SymmetricGroup(3));;

gap> IsSemisimpleRationalGroupAlgebra(FG);

false

6.1.3 IsSemisimpleANFGroupAlgebra

> IsSemisimpleANFGroupAlgebra (KG) (property)

The input must be a group ring.
Returns true if KG is the group algebra of a finite group over a subfield of a cyclotomic extension

of the rationals and false otherwise.
Example

gap> IsSemisimpleANFGroupAlgebra(GroupRing(NF(5,[4]) , CyclicGroup(28)));
true

gap> IsSemisimpleANFGroupAlgebra(GroupRing(GF(11) , CyclicGroup(28)));
false

6.1.4 IsSemisimpleFiniteGroupAlgebra

> IsSemisimpleFiniteGroupAlgebra(KG) (property)

The input must be a group ring.
Returns true if KG is a semisimple finite group algebra (9.2), that is a group algebra of a finite

group G over a field K of order coprime to the order of G, and false otherwise.
Example

gap> FG:=GroupRing(GF(5), SymmetricGroup(3));;
gap> IsSemisimpleFiniteGroupAlgebra(FG);

true

gap> KG:=GroupRing(GF(2), SymmetricGroup(3));;
gap> IsSemisimpleFiniteGroupAlgebra(KG);

false

gap> QG:=GroupRing(Rationals, SymmetricGroup(4));;
gap> IsSemisimpleFiniteGroupAlgebra(QG);

false

6.1.5 IsTwistingTrivial
> IsTwistingTrivial(G, H, K) (property)
The input must be a group and a strong Shoda pair of the group.

Returns true if the simple algebra QGe(G,H,K) has a trivial twisting (9.15), and false other-
wise.

Wedderga 37

Example

gap> G:=DihedralGroup(8);;

gap> H:=StrongShodaPairs(G) [5] [1];
Group([fi1xf2*xf3, £3 1)

gap> K:=StrongShodaPairs(G) [5] [2];
Group([f1*f2 1)

gap> IsTwistingTrivial(G,H,K);
true

6.2 Operations with group rings elements

6.2.1 Centralizer

> Centralizer(G, x) (operation)
Returns: A subgroup of a group G.
The input should be formed by a finite group G and an element x of a group ring FH whose
underlying group H contains G as a subgroup.
Returns the centralizer of x in G.
This operation adds a new method to the operation that already exists in GAP.
Example

gap> D16 := DihedralGroup(16);

<pc group of size 16 with 4 generators>

gap> QD16 := GroupRing(Rationals, D16);
<algebra-with-one over Rationals, with 4 generators>
gap> a:=QD16.1;b:=QD16.2;

(1)*f1

(1)*£2

gap> e := PrimitiveCentralldempotentsByStrongSP(QD16) [3];;
gap> Centralizer(D16, a);

Group([f1, £4 1)

gap> Centralizer(D16, Db);

Group([f2 1)

gap> Centralizer(D16, at+b);

Group([£4 1)

gap> Centralizer(D16, e);

Group([f1, £2 1)

6.2.2 OnPoints

> OnPoints(x, g) (operation)
> \~(x, g) (operation)

Returns: An element of a group ring.

The input should be formed by an element x of a group ring F'G and an element g in the underlying
group G of FG.

Returns the conjugate x8 = g~ !'xg of x by g. Usage of x~g produces the same output.

Wedderga

This operation adds a new method to the operation that already exists in GAP.

38

The following example is a continuation of the example from the description of Centralizer

(6.2.1).
Example

gap> ForAll1(D16,x->a"x=a);
false
gap> ForAl1(D16,x->e"x=e);
true

6.2.3 AverageSum

> AverageSum(RG, X)
Returns: An element of a group ring.

(operation)

The input must be composed of a group ring RG and a finite subset X of the underlying group G of

RG. The order of X must be invertible in the coefficient ring R of RG.

Returns the element of the group ring RG that is equal to the sum of all elements of X divided by

the order of X.

If X is a subgroup of G then the output is an idempotent of RG which is central if and only if X is

normal in G.

Example

gap> G:=DihedralGroup(16);;

gap> QG:=GroupRing(Rationals, G);;

gap> FG:=GroupRing(GF(5), G);;

gap> e:=AverageSum(QG, DerivedSubgroup(G));
(1/4)*<identity> of ...+(1/4)*£3+(1/4)*£4+(1/4)*£3%f4
gap> f:=AverageSum(FG, DerivedSubgroup(G));
(Z(5)~2)*<identity> of ...+(Z(5)"~2)*£3+(Z(5)~2)*£4+(Z(5)~2)*£3*f4
gap> G=Centralizer(G,e);

true

gap> H:=Subgroup(G, [G.1]);

Group([f1 1)

gap> e:=AverageSum(QG, H);

(1/2)*<identity> of ...+(1/2)*f1

gap> G=Centralizer(G,e);

false

gap> IsNormal(G,H);

false

6.3 Cyclotomic classes

6.3.1 CyclotomicClasses

> CyclotomicClasses(q, n)
Returns: A partition of [0..n].
The input should be formed by two relatively prime positive integers.
Returns the list g-cyclotomic classes (9.19) modulo n.

(operation)

Wedderga 39

Example

gap> CyclotomicClasses(2, 21);

rcol, 1,2, 4,8,16,111,[3,6, 121, [5, 10, 20, 19, 17, 13 1],
(7,141, [9, 18,1571

gap> CyclotomicClasses(10, 21);

rctol, 1, 10, 16, 13, 4, 191, [2, 20, 11, 5, 8, 17 1],
[3,9,6, 18,12, 161, [71, [1411

6.3.2 IsCyclotomicClass

> IsCyclotomicClass(q, n, C) (operation)

The input should be formed by two relatively prime positive integers g and n and a sublist C of
[0..n].

Returns true if C is a g-cyclotomic class (9.19) modulo n and false otherwise.
Example

gap> IsCyclotomicClass(2, 7, [1,2,4]);

true
gap> IsCyclotomicClass(2, 21, [1,2,4]);
false
gap> IsCyclotomicClass(2, 21, [3,6,12]);
true

6.4 Other commands

6.4.1 InfoWedderga

> InfoWedderga (info class)

InfoWedderga is a special Info class for Wedderga algorithms. It has 3 levels: 0, 1 (default) and
2. To change the info level to k, use the command SetInfoLevel (InfoWedderga, k).

In the example below we use this mechanism to see more details about the Wedderburn compo-
nents each time when we call WedderburnDecomposition.
Example

gap> SetInfolevel (InfoWedderga, 2);
gap> WedderburnDecomposition(GroupRing(CF(5), DihedralGroup(16)));
#I Info version : [[1, CF(5) 1, [1, CF(5) 1, [1, CF(5) 1,
L1, CF(5) 1, [2, CF(&) 1, [2, NF(40,[1, 31 1) 11
[CF(5), CF(5), CF(5), CF(5), (CF(B)~[2, 21),
<crossed product with center NF(40,[1, 31]) over AsField(NF(40,
[1, 31 1), CF(40)) of a group of size 2>]

Chapter 7

Functions for calculating Schur indices
and identifying division algebras

7.1 Main Schur Index and Division Algebra Functions

7.1.1 WedderburnDecompositionWithDivAlgParts

> WedderburnDecompositionWithDivAlgParts(4) (property)
Returns: A list of lists [r,D], each representing a ring of r X r matrices over a field or division
algebra D.

The input A should be a group ring of a finite group over an abelian number field. The function
will give the same result as WedderburnDecompositionInfo (2.1.2) if the field of coefficients for
the group ring is finite. The output is a list of pairs [r,D], each of which indicates a simple component
isomorphic to the ring of r x r matrices over a division algebra described using the information in the
record D. This record contains information on the center, Schur index, and local indices of the division
algebra.

Local indices is a list of pairs [p,m], where p is a rational prime (possibly ’infinity’) and m is
the local index of the division algebra at the prime p.
Example

gap> G:=SmallGroup(48,15);
<pc group of size 48 with 5 generators>
gap> R:=GroupRing(Rationals,G);
<algebra-with-one over Rationals, with 5 generators>
gap> WedderburnDecompositionInfo(R);
[[1, Rationals 1, [1, Rationals], [1, Rationals], [1, Rationals],
[2, Rationals], [2, Rationals], [2, Rationals 1, [2, NF(8,[1, 7 1) 1,
[2, CF(3], [1, Rationals, 12, [[2, 5,31, [2,7,011]1, [[311]
]
gap> WedderburnDecompositionWithDivAlgParts(R);
[[1, Rationals], [1, Rationals], [1, Ratiomals], [1, Ratiomnals],
[2, Rationals], [2, Rationals], [2, Rationals 1, [2, NF(8,[1, 7 1) 1,
[2, CF(3)],
L2,
rec(Center := Rationals, DivAlg := true,
LocalIndices := [[2, 21, [3, 2]], SchurIndex :=2)]]

40

Wedderga 41

7.1.2 CyclotomicAlgebraWithDivAlgPart

> CyclotomicAlgebraWithDivAlgPart (4) (property)

Returns: A list of length two indicating a matrix ring of a given size over a field or a noncom-
mutative division algebra.

The input A should be a cyclotomic algebra; i.e. a crossed product in the same form as in the
output of WedderburnDecompositionInfo (2.1.2). The output is in the form [r,D], which indicates
an r X r matrix ring over the division algebra described by D. D is either a field or a noncommutative
division algebra described using a record giving information on the center, Schur index, and local
indices of the division algebra.

Example

gap> G:=SmallGroup(240,89);

<permutation group of size 240 with 2 generators>

gap> R:=GroupRing(Rationals,G);

<algebra-with-one over Rationals, with 2 generators>

gap> W:=WedderburnDecompositionInfo(R);

Wedderga: Warning!!!

Some of the Wedderburn components displayed are FRACTIONAL MATRIX ALGEBRAS!!!

[[1, Rationals 1, [1, Rationals], [1, Ratiomals, 10, [4, 3, 51 1,
[4, Rationals], [4, Rationals], [5, Rationals], [5, Rationals],
[6, Rationals 1, [1, NF(12,[1, 11 1), 10, [4, 3, 51 1,
[3/2, NF(8,[1, 7 1), 10, [4, 3, 5111

gap> CyclotomicAlgebraWithDivAlgPart (W[3]);

[2, rec(Center := Rationals, DivAlg := true,

LocalIndices := [[5, 2], [infinity, 2]], SchurIndex := 2)]
gap> CyclotomicAlgebraWithDivAlgPart (W[9]);
[2, rec(Center := NF(12,[1, 11 1), DivAlg := true,

LocalIndices := [[infinity, 2]], SchurIndex := 2) 1]
gap> CyclotomicAlgebraWithDivAlgPart(W[10]);
[3, rec(Center := NF(8,[1, 7 1), DivAlg := true,
LocalIndices := [[infinity, 2]], SchurIndex := 2)]
7.1.3 Schurlndex
> SchurIndex(4) (property)
> SchurIndexByCharacter(F, G, n) (operation)

Returns: The first of these returns the Schur index of the simple algebra A. The second returns the
Schur index of the simple component of the group ring FG corresponding to the irreducible character
Irr(G) [n] of G.

These are the main functions for computing Schur indices. The first can be used to find the rational
Schur index of a simple component of the group ring of a finite group over an abelian number field, or
a quaternion algebra in GAP (see QuaternionAlgebra (Reference: QuaternionAlgebra)) whose
center is the field of rational numbers. If 4 is a quaternion algebra over a number field other than the
Rationals, fail is returned. In these cases, the quaternion algebra can be converted to a cyclic algebra

Wedderga 42

and the Schur index of the cyclic algebra can be determined through the solution of norm equations.
Currently this functionality is not implemented in GAP, but available in number theory packages such
as PARI/GP.

The second function computes the Schur index of the cyclotomic algebra that would occur as
the simple component of the group ring FG that corresponds to the irreducible character Irr (G) [n].
The function uses SimpleComponentByCharacterDescent (7.3.2), which uses the character descent
algorithm to reduce to as small a group as possible. For larger groups this is preferrable as it is less
demanding on memory. The Schur index of the resulting cyclotomic algebra is then computed with
the SchurIndex function.

Example

gap> G:=SmallGroup(63,1);

<pc group of size 63 with 3 generators>

gap> R:=GroupRing(Rationals,G);

<algebra-with-one over Rationals, with 3 generators>

gap> W:=WedderburnDecompositionInfo(R);

[[1, Rationals], [1, CF(3) 1, [1, CF(9) 1, [3, NF(7,[1, 2, 4 1) 1,
(1, NF(21,[1, 4, 16 1), 21, [3, 4,71 1]

gap> SchurIndex (W[5]);

3

gap> G:=SmallGroup(40,3);

<pc group of size 40 with 4 generators>

gap> i:=First([1..Length(Irr(G))],i->Size(KernelOfCharacter(Irr(G)[i]))=1);;

gap> SchurIndexByCharacter (GaussianRationals,G,Irr(G) [i]);

2

gap> SchurIndexByCharacter (CF(3),G,1);

1

gap> G:=AtlasGroup("J2");

<permutation group of size 604800 with 2 generators>

gap> Irr(G)[20];;

gap> SchurIndexByCharacter(Rationals,G,Irr(G) [20]);

1

7.1.4 WedderburnDecompositionAsSCAlgebras

> WedderburnDecompositionAsSCAlgebras (R) (operation)
> CyclotomicAlgebraAsSCAlgebra(4) (operation)
> SimpleComponentByCharacterAsSCAlgebra(F, G, n) (operation)

Returns: The first of these returns the Wedderburn decomposition of the group ring R with
each simple component presented as an algebra with structure constants in GAP (see (Reference:
Constructing Algebras by Structure Constants) in the main GAP manual). The second converts
a list A that is output from WedderburnDecompositionInfo (2.1.2) into an algebra with structure
constants in GAP. The third determines an algebra with structure constants that is isomorphic to the
simple component of the group ring of the finite group G over the field F that corresponds to the
irreducible character Irr (G) [n].

These functions are an option for obtaining a Wedderburn decomposition or simple component of
the group ring FG in which the output is in the form of an algebra with structure constants, which is
more compatible with GAP’s built-in operations for finite-dimensional algebras.

Wedderga 43

Example

gap> G:=SmallGroup(63,1);

<pc group of size 63 with 3 generators>

gap> R:=GroupRing(Rationals,G);

<algebra-with-one over Rationals, with 3 generators>

gap> W:=WedderburnDecompositionInfo(R);

[[1, Rationals 1, [1, CF(3) 1, [1, CF(9 1, [3, NF(7,[1, 2, 4 1) 1,
[1, NF(21,[1, 4, 16 1), 21, [3, 4, 7111

gap> WedderburnDecompositionWithDivAlgParts(R);

[[1, Rationals], [1, CF(3) 1, [1, CF(9) 1, [3, NF(7,[1, 2, 4 1) 1,
[1,

rec(Center := NF(21,[1, 4, 16 1), DivAlg := true,
LocalIndices := [[7, 3] 1, SchurIndex := 3)] 1]

gap> WedderburnDecompositionAsSCAlgebras(R);

[Rationals, CF(3), CF(9), (NF(7,[1, 2, 4 1D~[3, 31),
<algebra of dimension 9 over NF(21,[1, 4, 16 1)>]

gap> CyclotomicAlgebraAsSCAlgebra(W[5]);

<algebra of dimension 9 over NF(21,[1, 4, 16])>

gap> Size(Irr(G));

15

gap> SimpleComponentByCharacterAsSCAlgebra(Rationals,G,15);

<algebra of dimension 9 over NF(21,[1, 4, 16 1)>

7.2 Cyclotomic Reciprocity Functions

7.2.1 PPartOfN

> PPart0fN(a , p) (operation)
> PDashPart0fN(n, p) (operation)

These are standard arithmetic functions required by several subroutines for the cyclotomic reci-

procity and Schur index functions in Wedderga.
Example

gap> PPart0fN(2275,5);

25

gap> PDashPart0fN(2275,5) ;
91

7.2.2 PSplitSubextension

> PSplitSubextension(F, n, p) (operation)
Returns: The maximal subextension K of the cyclotomic extension F(E(n)) /F for which K /F
splits completely at the prime p.
This function finds the maximal subextension K of the cyclotomic extension F (E(n)) of an abelian
number field F for which both the ramification index and residue degree of K/F over any prime lying

Wedderga 44

over p are 1. To do this, it finds the field fixed by an appropriate power of the field automorphism
inducing the local Frobenius automorphism.
Example

gap> PSplitSubextension(Rationals,60,5);
GaussianRationals

gap> PSplitSubextension(NF(5,[1,4]),70,2);
NF(35,[1, 4, 9, 11, 16, 29 1)

gap> PSplitSubextension(NF(40,[1,9,11,19]),20,2);
NF(40,[1, 9, 11, 191)

7.2.3 SplittingDegreeAtP

> SplittingDegreeAtP(F, n, p) (operation)
> ResidueDegreeAtP(F, n, p) (operation)
> RamificationIndexAtP(F, n, p) (operation)

Returns: The splitting degree, residue degree, and ramification index of the extension F (E(n)) /F
at the prime p.

These functions calculate the cyclotomic reciprocity parameters g, £, and e for the extension
F(E(n))/F at the prime p for an abelian number field F. To do this, it finds the p-split subex-
tension K and the p-dash part n’ of n, then calculates g = [K:F], f = [K(E(n’):K], and e =
[K(E(n)) :K(E(n’))]. These functions enable the user to calculate cyclotomic reciprocity parame-
ters for any extension of abelian number fields, as the example illustrates.

Example

gap> F:=CF(12);

CF(12)

gap> K:=NF(120,[1,49]) # Note that F is a subfield of K, with index 4.

> ; # Then we can find e, f, and g for the extension K/F at the prime 5.
NF(120,[1, 49 1)

gap> RamificationIndexAtP(F,120,5); RamificationIndexAtP(K,120,5); last2/last;
4

2

2

gap> ResidueDegreeAtP(F,120,5); ResidueDegreeAtP(K,120,5); last2/last;

1

1

1

gap> SplittingDegreeAtP(F,120,5); SplittingDegreeAtP(XK,120,5); last2/last;
2

1

2

Wedderga 45

7.3 Global Splitting and Character Descent Functions

7.3.1 GlobalSplittingOfCyclotomicAlgebra

> GlobalSplittingOfCyclotomicAlgebra(4) (operation)
> KillingCocycle(4) (operation)
> Anti SymM atUpMat (x) (operation)
> CyclotomicExtensionGenerator (K, F) (operation)
> ReducingCyclotomicAlgebra(4) (operation)

Returns: If the input cyclotomic crossed product algebra A admits a rescaling of basis ele-
ments by roots of unity that makes it equivalent to one with a trivial factor set, the first function
here returns a full matrix algebra over the same center with the same dimension as A. In general
the function will output a cyclotomic algebra equivalent to A whose factor set does not admit a
partial splitting by a simple rescaling of basis elements by roots of unity. KillingCocycle is a
subroutine used by GlobalSplitting0fCyclotomicAlgebra function to produce equivalent fac-
tor sets that have more zeroes, AntiSymMatUpMat is a subroutine it uses to manipulate the factor
set information in anti-symmetric matrix form. ReducingCyclotomicAlgebra is another subrou-
tine used by the GlobalSplitting0fCyclotomicAlgebra that either returns an isomorphic cyclo-
tomic algebra whose associated Galois group has fewer generators than the input, or returns fail.
CyclotomicExtensionGenerator is a subroutine called by ReducingCyclotomicAlgebra which
returns a positive integer m if the field K is the cyclotomic extension of F obtained by adjoining a
primitive m-th root of 1, and returns fail otherwise.

The input A must be a list representing a cyclotomic algebra in the same form as in the output
of WedderburnDecompositionInfo (2.1.2) or SimpleAlgebraByCharacterInfo (2.2.2). If the
output has length 5, the function will first search using KillingCocycle and AntiSymMatUpMat
for a rescaling of basis elements that makes the factor set trivial, and in general finds one that pro-
duces as many zeroes as possible in the factor set information. If there is a generator that produces
a split tensor factor with a cyclotomic algebra B defined over a root of unity of smaller order, then
ReducingCyclotomicAlgebra reduces to B. These steps are repeated until such tensor factorizations
are no longer available.

Example

gap> A := [1, Rationals, 20, [[2, 11, 01, [4,3, 011, [[01]111;;
gap> GlobalSplitting0fCyclotomicAlgebra(A);

[8, Rationals]

gap> A := [1, Rationals, 20, [[2, 11, 01, [4, 3, 1011, L [L0111;;
gap> GlobalSplittingOfCyclotomicAlgebra(A);

[2, Rationals, 10, [4, 3, 51 1]

7.3.2 CharacterDescent

> CharacterDescent(F, G, n, e, H) (operation)
> GlobalCharacterDescent(F, G, n) (operation)
> SimpleComponentByCharacterDescent(F, G, n) (operation)

Returns: The first function returns [r,F1,H,k] where r is a positive rational, F1 is an extension
field of F, H is the input subgroup H, and k is the position in Irr (H) of the irreducible character that
admits a Global Character Descent reduction; i.e. an irreducible character of H that has the same local

Wedderga 46

indices as Irr(G) [n]. The second function returns the limit of the Character Descent reductions,
it returns the last CharacterDescent output obtained before reaching a state where no maximal
subgroup of G admits a further reduction by CharacterDescent. The third function returns the
simple component of FG resulting from GlobalCharacterDescent that is produced by applying
SimpleComponentOfGroupRingByCharacter (7.5.3) and adjusting the matrix degree.

The CharacterDescent function tries to find an irreducible character psi=Irr (H) [k] of H for
which [F(chi,psi),F(chi)] and (chi_H,psi) are both coprime to |G|. This character psi will
have the same local indices over F as chi by a theorem of Yamada. The GlobalCharacterDescent
function iterates a search for these global character descent reductions over irreducible characters of
maximal subgroups of G, and when it finds one it replaces G, F(chi), and chi by H, F(chi,psi), and
psi, and then begins a search over maximal subgroups of H. It terminates when no maximal subgroup
admits a global reduction, and returns the relevant matrix degree factor along with the last H and psi
it found. SimpleComponentByCharacterDescent implements an algorithm that returns the simple
component of FG associated with Irr (G) [n] obtained using the global character descent algorithm.

Example

gap> G:=PSU(3,3);

<permutation group of size 6048 with 2 generators>

gap> sc := SimpleComponentByCharacterDescent(Rationals,G,8);;
gap> sc{[1..3]}; # the 4th entry is [2, 5, 3] or [2, 5, 9]
[21/2, GaussianRationals, 12]

gap> SchurIndex(sc);

1

7.3.3 GaloisRepsOfCharacters

> GaloisRepsOfCharacters(F, G) (operation)
Returns: A list of positive integers n that indicates the positions in Irr (G) of the Galois conju-
gacy classes of irreducible characters of G over the field F.
GaloisRepsOfCharacters finds a list of representatives of the distinct Galois conjugacy classes
of irreducible characters of G over F. It runs through the irreducible characters and determines if a
given irreducible is Galois conjugate over F to any of the previous ones, and if not it adds the position
of that character to the list.

Example

gap> G:=SmallGroup(63,1);

<pc group of size 63 with 3 generators>

gap> GaloisRepsOfCharacters(Rationals,G);

[1, 2, 4, 10, 12]

gap> GaloisRepsOfCharacters(CF(9),G);

[1, 2, 3, 4,5,6,7,8,9, 10, 12, 13]

gap> GaloisRepsOfCharacters(NF(7,[1,2,4]),G);

[1, 2, 4, 10, 11, 12, 14]

gap> GaloisRepsOfCharacters(CF(63),G);

(1, 2, 3, 4, 5,6, 7, 8,9, 10, 11, 12, 13, 14, 15]

Wedderga 47

7.3.4 WedderburnDecompositionByCharacterDescent

> WedderburnDecompositionByCharacterDescent (F, ® (operation)

Returns: A Wedderburn decomposition of FG that is obtained by applying the global character
descent algorithm to representatives of the Galois conjugacy classes of irreducible characters of G over
F.

WedderburnDecompositionByCharacterDescent is available as an option to
WedderburnDecompositionInfo (2.1.2) that can be more effective for larger groups, espe-
cially ones with relatively few irreducible characters. As long as GAP is able to compute maximal
subgroups and restrict irreducible characters of G to them, this function should eventually return a
Wedderburn decomposition. As it operates on one irreducible character at a time, it is less effective
on Abelian groups, which have far too many irreducible characters, and on most groups in GAP’s
Small Groups Library, where memory limitations are not a factor and it is possible for the Shoda pair
algorithms can deal with many irreducible characters at the same time.

Example

gap> G:=GL(3,3);

GL(3,3)

gap> Size(G);

11232

gap> WedderburnDecompositionByCharacterDescent (Rationals,G) ;

[[1, Rationals], [1, Rationals], [12, Rationals], [12, Rationals 1],
[13, Rationals], [13, Rationals], [16, NF(13,[1, 3, 9 1) 1,

[16, NF(13,[1, 3, 9 1) 1, [26, Rationals], [26, Rationals],

[26, NF(8,[1, 3 1) 1, [26, NF(8,[1, 3 1) 1, [27, Rationals],

[27, Rationals], [39, Rationals], [39, Rationals] 1]

7.4 Local index functions for Cyclic Cyclotomic Algebras

7.4.1 LocallndicesOfCyclicCyclotomicAlgebra

> LocalIndices0fCyclicCyclotomicAlgebra(4) (operation)

Returns: A list of the pairs [p,m] indicating the nontrivial local indices m at the primes p of the
cyclic cyclotomic algebra indicated by A.

The input A must be a list representing a cyclic cyclotomic algebra in the same form as in the
output of WedderburnDecompositionInfo (2.1.2) or SimpleAlgebraByCharacterInfo (2.2.2).
This function computes the local Schur indices at rational primes p using the specialized functions for
cyclic cyclotomic algebras described in this section.

Example

gap> A:=[1,Rationals,6,[2,5,3]];

[1, Rationals, 6, [2, 5, 31 1]

gap> LocalIndices0fCyclicCyclotomicAlgebra(A);
[[3, 2171, [infinity, 21]

Wedderga 48

7.4.2 LocallndexA tInfty

> LocalIndexAtInfty(4) (operation)
> LocalIndexAtTwo (4) (operation)
> LocalIndexAt0ddP(4, p) (operation)

Returns: These return the local index of the cyclic cyclotomic algebra A at the indicated rational
prime.

The input A must be a cyclic cyclotomic algebra; that is, a list of the form [r,F,n, [a,b,c]]
that indicates a cyclic cyclotomic crossed product algebra. This is a special case of the out-
put of wedderga’s WedderburnDecompositionInfo (2.1.2) or SimpleAlgebraByCharacterInfo
(2.2.2). For the LocalIndexAt0ddP function, p must be an odd prime. The functions PPart0fN
(7.2.1) and PDashPart0£N (7.2.1) are standard (and self-explanatory) arithmetic functions for a posi-
tive integer n and prime p.

These functions determine the local index of a cyclic cyclotomic algebra at the rational primes
’infinity’, 2, or odd primes p, respectively. The first two functions check for a relationship of A
to a nonsplit real or 2-adic quaternion algebra. LocalIndexAt0ddP calculates the local index at p
by counting the number of roots of unity coprime to p found in the p-adic completion, and using a

formula due to Janusz.
Example

gap> A:=[1,CF(4),20, [4,13,15]];

[1, GaussianRationals, 20, [4, 13, 15]]
gap> LocalIndexAt0ddP(A,5);

4

gap> A:=[1,NF(8,[1,7]),8,[2,7,41];
(1, NFB,[1, 71,8, [2,7,41]1]1]
gap> LocalIndexAtInfty(A);

2

gap> A:=[1,CF(7),28,[2,15,14]1];

[1, CF(7), 28, [2, 15, 14 1 1]

gap> LocalIndexAtTwo(A);

2

7.5 Local index functions for Non-Cyclic Cyclotomic Algebras

7.5.1 LocallndicesOfCyclotomicAlgebra

> LocalIndices0fCyclotomicAlgebra(4) (operation)

Returns: A list of pairs [p,m] indicating the nontrivial local indices m at the primes p of the
cyclic cyclotomic algebra indicated by A.

The input A should be a cyclotomic algebra; i.e. a list of length 2, 4, or 5 in the
form of the output by Wedderga’s “-Info” functions. If the cyclotomic algebra A is rep-
resented by a list of length 2, the local indices are all 1, so the function will return an
empty list. If the cyclotomic algebra A is given by a list of length 4, then it repre-
sents a cyclic cyclotomic algebra, so the function LocalIndices0fCyclicCyclotomicAlgebra
(7.4.1) is utilized. If the cyclotomic algebra A is presented as a list of length 5
or more, the function first applies GlobalSplitting0fCyclotomicAlgebra (7.3.1) to re-
duce the length as much as possible. If this does not reduce the length to 4 or less,

Wedderga 49

it applies the character descent algorithm to try to reduce it again with Clifford the-
ory: it determines the group and character chi that faithfully represent the algebra using
DefiningGroup0fCyclotomicAlgebra (7.5.3) and DefiningCharacter0fCyclotomicAlgebra
(7.5.3), then applies SimpleComponentByCharacterDescent (7.3.2). It repeats this until it can-
not reduce the length of cyclotomic algebra any longer. If the length is 4 it will apply the local index
functions for cyclic cyclotomic algebras to compute the local indices at each prime dividing the order
of the group. If the length is 5 or more, it applies the character-theoretic local Schur index functions to
the output [G,chi] of DefiningGroupAndCharacter0fCyclotAlg (7.5.3). It uses the Frobenius-
Schur indicator of chi to determine the local index at infinity (see LocalIndexAtInftyByCharacter
(7.5.4)). For local indices at odd primes and sometimes for the prime 2, the defect group of the block
containing chi will be cyclic, so the local index can be found using the values of a Brauer character
by a theorem of Benard (see LocalIndexAtPByBrauerCharacter (7.5.6).) Sometimes for the prime
2 the defect group is not necessarily cyclic, so in these cases we appeal to the classification of dyadic

Schur groups by Schmid and Riese (see LocalIndexAtTwoByCharacter (7.5.7)).
Example

gap> G:=SmallGroup(480,600) ;

<pc group of size 480 with 7 generators>

gap> W:=WedderburnDecompositionInfo(GroupRing(Rationals,G));;

gap> Size(W);

27

gap> W[27];

(1, NF(5,[1, 41,60, [[2,11,01, [2,119,301, [2, 31,3011,
[[0,45], [1561 1]

gap> Locallndices0fCyclotomicAlgebra(W[27]);

[[infinity, 2]]

Example

gap> G:=SmallGroup(160,82);

<pc group of size 160 with 6 generators>

gap> W:=WedderburnDecompositionInfo(GroupRing(Rationals,G));;
gap> Size (W) ;

14

gap> W[14];

[1, Rationals, 20, [[2, 11, 01, [4,3, 011, [[511]1
gap> LocallndicesOfCyclotomicAlgebra(W[14]);

(02 271,005,211

7.5.2 RootOfDimensionOfCyclotomicAlgebra

> RootOfDimension0fCyclotomicAlgebra(4) (operation)
Returns: A positive integer representing the square root of the dimension of the cyclotomic
algebra over its center.

Example

gap> A:=[3,Rationals,12,[[2,5,3],[2,7,01],[[3]11];
[3, Rationals, 12, [[2, 5, 31, [2, 7,011, [[311]1]

Wedderga 50

gap> RootOfDimension0fCyclotomicAlgebra(A);
12

7.5.3 DefiningGroupOfCyclotomicAlgebra

> DefiningGroupOfCyclotomicAlgebra(4) (operation)
> DefiningCharacterOfCyclotomicAlgebra(4) (operation)
> DefiningGroupAndCharacter0fCyclotAlg(4) (operation)

Returns: These functions return a finite group G and a positive integer n (or, in the case to the
third function, an irreducible character n of G for which the simple component of a group algebra over
G over the center of the cyclotomic algebra A corresponding to the character Irr (G) [n] (resp. n) will
be (rationally) isomorphic to A.
> SimpleComponentOfGroupRingByCharacter(F, G, n) (operation)

Returns: A list that describes the algebraic structure of the simple component of the group algebra
FG which corresponds to the irreducible character Irr (G) [n] (or n).

This function is an alternative to SimpleAlgebraByCharacterInfo(GroupRing(F,G),
Irr(G) [n]);. It is used in subroutines of local index functions when we need to work over a field
larger than the field of character values.

Example

gap> G:=SmallGroup(48,15);

<pc group of size 48 with 5 generators>

gap> R:=GroupRing(Rationals,G);

<algebra-with-one over Rationals, with 5 generators>

gap> W:=WedderburnDecompositionInfo(R);;

gap> A:=W[10];

[1, Rationals, 12, [[2,5,31, [2,7,0171, [[311]
gap> g:=DefiningGroupO0fCyclotomicAlgebra(4);

Group ([£3xf4xf5, f1, £2])

gap> IdSmallGroup(g);

[48, 15]
gap> n:=DefiningCharacter0fCyclotomicAlgebra(A);
12

gap> SimpleComponentOfGroupRingByCharacter (Rationals,G,n)
> ;#Note:this cyclotomic algebra is isomorphic to the other by a change of basis.
[1, Rationals, 12, [[2,5, 31, [2, 7,011, [[311]1

7.5.4 LocallndexAtInftyByCharacter

> LocalIndexAtInftyByCharacter(F, G, n) (operation)
Returns: The local index at an infinite prime of the field F of the irreducible character Irr (G) [n]
(or n) of the finite group G.
This function computes the Frobenius-Schur indicator of the irreducible character Irr(G) [n],
and uses it to calculate the local index at infinity of the corresponding simple component of FG.
Example

gap> G:=SmallGroup(48,16);

Wedderga 51

<pc group of size 48 with 5 generators>

gap> i:=First([1l..Length(Irr(G))],i->Size(KernelOfCharacter(Irr(G)[i]))=1);;
gap> LocallndexAtInftyByCharacter(Rationals,G,1i);

2

gap> LocalIndexAtInftyByCharacter(CF(3),G,Irr(G) [i]);

1

7.5.5 DefectGroupOfConjugacyClassAtP

> DefectGroupO0fConjugacyClassAtP(G, c, p) (operation)
> DefectGroupsOfPBlock(G, n, p) (operation)
> DefectOfCharacterAtP(G, n, p) (operation)

Returns: The first of these functions returns a defect group of the c-th conjugacy class of the
finite group G at the prime p. The second returns the conjugacy class of p-subgroups of G that consists
of defect groups for the p-block containing the ordinary irreducible character Irr (G) [n]. The last of
these functions returns the nonnegative integer d for which p~d is the order of a p-defect group for
Irr(G) [n].

The p-defect group of a given conjugacy class of G is a p-Sylow subgroup of the centralizer in
G of any representative of the class. A defect group for a p-block of G is a minimal p-subgroup that
is a defect group for a defect class of the block. By Brauer’s Min-Max theorem, this will occur for
at least one p-regular class of G. The function DefectGroups0OfPBlock identifies the defect classes
for the block containing Irr (G) [n], finds the one whose defect group has minimal order, and returns
the conjugacy class of the defect group of this class. The function Defect0fCharacterAtP gives the
logarithm base p of the order of a defect group of the p-block containing the character Irr (G) [n].
Example

gap> G:=SmallGroup(72,21);

<pc group of size 72 with 5 generators>

gap> i:=First([1..Length(Irr(G))],i->Size(KernelOfCharacter(Irr(G) [i]))=1);;
gap> D:=DefectGroup0fConjugacyClassAtP(G,1,3);
Group([f4, £5 1)

gap> IsCyclic(last);

false

gap> D:=DefectGroups0fPBlock(G,Irr(G) [i],3);
Group([f4, f5 1)G

gap> IsCyclic(Representative(D));

false

gap> DefectOfCharacterAtP(G,Irr(G)[i],3);

2

7.5.6 LocallndexAtPByBrauerCharacter

> LocalIndexAtPByBrauerCharacter(F, G, n, p) (operation)
> FinFieldExt(F, G, p, n, m) (operation)
Returns: The first returns the local index at the rational prime p of the simple component of the

Wedderga 52

group ring FG that corresponds to Irr(G) [n]. The second returns the degree of a certain extension of
finite fields of p-power order.

The input of LocalIndexAtPByBrauerCharacter must be an abelian number field F, a finite
group G, and the number n of an ordinary irreducible character Irr (G) [n], and p a prime divisor
of the order of G. Since this function is intended to be used for faithful characters of groups that are
the defining groups of non-cyclic cyclotomic algebras that result from Wedderga’s Info functions, it
is expected that G is a non-nilpotent cyclic-by-abelian group, and Irr(G) [n] is a faithful character.
The Brauer character table records of such groups can be accessed in GAP (provided G is sufficiently
small).

The local index calculation uses Benard’s theorem, which shows that the local index at p of the
simple component of the rational group algebra QG corresponding to the character Irr (G) [n] is the
degree of the extension of the residue field of the center given by adjoining an irreducible p-Brauer
character IBr (G, p) [m] lying in the same block, provided the defect group of the block is cyclic. If
the defect group of the block is not cyclic, the resulting calculation is unreliable, and the function
will output a list whose second term is the warning label "DGnotCyclic". The degree of this finite
field extension is calculated by FinFieldExt. It determines the local index relative to the field F by
dividing the local index at p over the rationals by a constant determied using a theorem of Yamada.

Example

gap> G:=SmallGroup(80,28);
<pc group of size 80 with 5 generators>
gap> T:=CharacterTable(G);;
gap> i:=First([1..Length(Irr(G))],i->Size(KernelOfCharacter(Irr(G)[i]))=1);;
gap> S:=T mod 5;
BrauerTable(<pc group of size 80 with 5 generators>, 5)
gap> BlocksInfo(S);
[rec(defect := 1, modchars := [1, 3, 7, 8 1,
ordchars := [1, 3, 7, 8, 18]),
rec(defect := 1, modchars := [2, 4, 5, 6],
ordchars := [2, 4, 5, 6, 17 1),
rec(defect := 1, modchars := [9, 12, 14, 15],
ordchars := [9, 12, 14, 15, 19 1]),
rec(defect := 1, modchars := [10, 11, 13, 16],
ordchars := [10, 11, 13, 16, 20]) 1]
gap> LocalIndexAtPByBrauerCharacter(Rationals,G,1i,5);
2
gap> FinFieldExt(Rationals,G,5,1i,9);
2

Example

gap> G:=SmallGroup(72,20);

<pc group of size 72 with 5 generators>

gap> i:=First([1..Length(Irr(G))],i->Size(KernelOfCharacter(Irr(G)[i]))=1);;
gap> LocalIndexAtPByBrauerCharacter(Rationals,G,Irr(G) [i],3);

[2, "DGnotCyclic"]

gap> LocalIndexAtPByBrauerCharacter(Rationals,G,i,2);

1

Wedderga 53

7.5.7 LocallndexAtOddPByCharacter

> LocalIndexAt0ddPByCharacter(F, G, n, p) (operation)
> LocalIndexAtTwoByCharacter(F, G, n) (operation)
> IsDyadicSchurGroup(G) (operation)

Returns: The first two function determines the local index at the given prime p of the simple
component of FG corresponding to the irreducible character Irr (G) [n]. The third one returns ’true’
if G is a dyadic Schur group, and otherwise *false’ .

LocalIndexAt0ddPByCharacter and LocalIndexAtTwoByCharacter first determine a cyclo-
tomic algebra representing the simple component of FG corresponding to the character Irr (G) [n].
They then extend the field F' to K, where K is the maximal p-split subextension of F(E(n))/F,
and recalculates the simple component of KG corresponding to Irr(G) [n]. It then uses the
DefiningGroup. .. functions to reduce to a faithful character of a possibly smaller cyclic-by-abelian
group. If the simple component for this character is given in Wedderga as a list of length 2 or
4, they make use of LocalIndexAt0ddP (7.4.2) or LocalIndexAtTwo (7.4.2) as appropriate. If
the simple component over F has length 5, it checks if the defect group of the p-block containing
Irr(G) [n] is cyclic. If this is definitely so, they use LocalIndexAtPByBrauerCharacter (7.5.6) to
calculate the p-local index. Exceptions can occur when p is 2. When the defect group is not neces-
sarily cyclic, LocalIndexAtTwoByCharacter makes use of IsDyadicSchurGroup, which checks if
a quasi-elementary group has a faithful irreducible character 2-local index 2, then verifies that K does
not split the simple component generated by this character.

These functions are designed for faithful characters of groups that faithfully represent cyclotomic
algebras, and so should be used with caution in other situations.

Example

gap> G:=SmallGroup(48,15);

<pc group of size 48 with 5 generators>

gap> i:=First([1..Length(Irr(G))],i->Size(KernelOfCharacter (Irr(G)[i]))=1);;
gap> LocalIndexAt0ddPByCharacter (Rationals,G,Irr(G) [i],3);

2

gap> LocalIndexAtTwoByCharacter (Rationals,G,Irr(G) [i]);

2

gap> LocalIndexAtTwoByCharacter(CF(3),G,Irr(G) [i]);

1

7.6 Local index functions for Rational Quaternion Algebras

7.6.1 LocallndicesOfRationalQuaternionAlgebra

> LocalIndicesOfRationalQuaternionAlgebra(4) (operation)
> LocalIndicesOfRationalSymbolAlgebra(a, b) (operation)
> LocalIndicesOfTensorProductOfQuadraticAlgs(L, M) (operation)
> GlobalSchurIndexFromLocalIndices (L) (operation)

Returns: The first of these functions return a list of pairs [p,m] indicating that m is the
local index at the prime p for the given quaternion algebra. The second does the same for
QuaternionAlgebra(Rationals,a,b). The third returns a list of local indices computed from two

Wedderga 54

given lists of local indices, and the fourth returns the least common multiple of the local indices in the
given list of local indices.

For the first function, the input must be a quaternion algebra over the rationals, output from
QuaternionAlgebra(Rationals,a,b). For the first function, a and b can be any pair of integers,
and for the second rational symbol algebra version, a and b are restricted to be either -1 or positive
prime integers, otherwise it will return fail. The input of the third function is a pair of lists of p-local
indices in which the maximum local index at any prime is at most 2. The input of the fourth function
is a list of pairs [p,m] in which each prime that appears only appears in one of the pairs, and the m’s
that appear are all positive integers.

LocalIndicesOfRationalQuaternionAlgebra first factors the algebra as a ten-
sor product of rational quaternion algebras, obtaining suitable pairs a and b to which
LocalIndicesOfRationalSymbolAlgebra can be applied. The local indices are calculated
using well-known formulas involving the Legendre Symbol. The local indices of the original algebra
are then determined using LocalIndicesOfTensorProduct0fQuadraticAlgs, which takes a pair
of lists of local indices of quadratic algebras - for which the maximum local index at any prime p is
2, and finds the list of local indices of the tensor product of two algebras with these local indices.

GlobalSchurIndexFromLocalIndices simply computes the least common multiple of the local

indices at each prime that occurs in the list.
Example

gap> LocalIndicesOfRationalSymbolAlgebra(-1,-1);
[[infinity, 21, [2, 21 1]

gap> LocallndicesOfRationalSymbolAlgebra(3,-1);
(02, 271,03, 211

gap> LocalIndicesOfRationalSymbolAlgebra(-3,2);
fail

gap> LocallndicesOfRationalSymbolAlgebra(3,7);
(02, 21,[07,21]1

gap> A:=QuaternionAlgebra(Rationals,-30,-15);
<algebra-with-one of dimension 4 over Rationals>
gap> LocalIndicesOfRationalQuaternionAlgebra(A);
[[5,21, [infinity, 21 1

gap> A:=QuaternionAlgebra(CF(5),3,-2);
<algebra-with-one of dimension 4 over CF(5)>
gap> LocalIndicesOfRationalQuaternionAlgebra(A);
fail

7.6.2 IsRationalQuaternionAlgebraADivisionRing

> IsRationalQuaternionAlgebraADivisionRing(4) (operation)

Returns: If the rational quaternion algebra is a noncommutative division ring, true is returned,
and if otherwise, false.

The input A must be a quaternion algebra over the rationals, as output from
QuaternionAlgebra(Rationals,a,b). « and b must be rational integers. When applied to
other algebras, it returns fail.

The function calculates the rational Schur index of the algebra using
LocalIndicesOfRationalQuaternionAlgebra (7.6.1), and returns true if the rational Schur
index of the algebra is 2, and false if the rational Schur index is 1.

Wedderga 55

This function should be preferred over GAP’s IsDivisionRing (Reference: IsDivisionRing)
when dealing with rational quaternion algebras, since the result of latter function only depends on
the local index at infinity for quaternion algebras, and makes no use of the local indices at the finite
primes.

Example

gap> A:=QuaternionAlgebra(Rationals,-30,-15);
<algebra-with-one of dimension 4 over Rationals>
gap> IsRationalQuaternionAlgebraADivisionRing(A);
true

gap> LocallndicesOfRationalQuaternionAlgebra(4);
[[5, 2171, [infinity, 2]]

gap> A:=QuaternionAlgebra(Rationals,3,-2);
<algebra-with-one of dimension 4 over Rationals>
gap> IsRationalQuaternionAlgebraADivisionRing(A);
false

gap> LocalIndicesOfRationalQuaternionAlgebra(4);
[1]

7.7 Functions involving Cyclic Algebras

Cyclic algebras are represented in Wedderga as lists of length 3, in the form [F,K, [c]], which stands
for a cyclic crossed product algebra of the form (K/F, c), with K/F a cyclic galois extension of abelian
number fields, and ¢ an element of F determining the factor set. Schur indices of cyclic algebras can
be determined through the solution of inverse norm equations in general. Though currently algorithms
for this are not available in GAP, algorithms have been implemented in some computational number
theory software systems such as PARI/GP.

The functions in this section allow one to convert cyclotomic algebras into cyclic algebras (or
possibly as tensor products of two cyclic algebras), to convert generalized quaternion algebras into
quadratic algebras (i.e. cyclic algebras for a Galois extension of degree 2), to convert quadratic al-
gebras into generalized quaternion algebras, and to convert cyclic algebras into cyclic cyclotomic
algebras, whenever possible.

7.7.1 DecomposeCyclotomicAlgebra

> DecomposeCyclotomicAlgebra(4) (operation)

Returns: Two lists, each representing a cyclic algebra over the center of A, whose tensor product
is isomorphic to the cyclotomic algebra described by A.

The input must be list representing a cyclotomic algebra of length 5 whose Ga-
lois group has 2 generators. This is represented in Wedderga as a list of the form
[r,F,n, [[m1,k1,11], [m2,k2,12]]1, [[d]]]. (Longer presentations of cyclotomic algebras do oc-
cur in Wedderga output. Currently we do not have a general decomposition algorithm for them.)

For these algebras, the extension F(E(n)) /F is the tensor product of two disjoint extensions K1
and K2 of F, and the program adjusts one of the factor sets (corresponding to /1 or [2) so that d
becomes 0. After this adjustment, the algebra is then the tensor product of cyclic algebras of the form
[F,K1, [c1]] and [F,K2, [c2]] provided c1 and c2 lie in F. If the latter condition is not satisfied,

Wedderga 56

the string “fails” is appended to the output. (We have not encountered this problem among the group
algebras of small groups we have tested so far.)
Example

gap> G:=SmallGroup(96,35);
<pc group of size 96 with 6 generators>
gap> W:=WedderburnDecompositionInfo(GroupRing(Rationals,G));;
gap> Size(W);
12
gap> A:=W[12];
[1, NF(B,[1, 71), 24, [L 2,7,121, [2,117,911, [[311]1
gap> DecomposeCyclotomicAlgebra(A);
[[NFEB,[1, 71, CF(8, [-111,
[NF(8,[1, 7 1), NF(24,[1, 7 1), [E(8)+2*E(8)"2+E(8)"3 1 1]

7.7.2 ConvertCyclicAlgToCyclicCyclotomicAlg

> ConvertCyclicAlgToCyclicCyclotomicAlg(4) (operation)
Returns: A list of the form [1,F,n, [a,b,c]] which represents a cyclic cyclotomic algebra.
This function converts a cyclic algebra given by a list [F,F(E(n)),[E(n)~c]]
to an isomorphic cyclic cyclotomic algebra represented as the list [1,F,n,[a,b,c]].
> ConvertQuadraticAlgToQuaternionAlg(A) (operation)
Returns: A generalized quaternion algebra.
The input should be a list of the form [F,K, [c]] where the field K must be obtained by adjoining
the square root of a nonsquare element d of F. The function then returns the quaternion algebra given
in GAP by QuaternionAlgebra(F,d,c) ;.

Example

gap> A:=[NF(24,[1,11]),CF(24),[-1]];

[NF(24,[1, 11 1), CF(24), [-1 1 1

gap> ConvertCyclicAlgToCyclicCyclotomicAlg(A);

[1, NF(24,[1, 11 1), 24, [2, 11, 121]

gap> LocalIndices0fCyclicCyclotomicAlgebra(last);

[1]

gap> ConvertQuadraticAlgToQuaternionAlg(A);
<algebra-with-one of dimension 4 over NF(24,[1, 11 1)>
gap> b:=Basis(last);

Basis(<algebra-with-one of dimension 4 over NF(24,[1, 11 1)>, ...)
gap> b[11-2; b[2]1"2; b[3]1"2; b[4]"2;

e

(-1)*e

(-1)*e

(-1)*e

gap> b[2]*b[3]+b[3]*b[2];

Ox*e

Wedderga 57

7.7.3 ConvertQuaternionAlgToQuadraticAlg

> ConvertQuaternionAlgToQuadraticAlg(4) (operation)

Returns: A list of the form [F,X, [c]] representing a cyclic algebra for which the degree of the
extension K/F is 2.

The input must be a quaternion algebra whose center is an abelian number field
F, presented as in the output from QuaternionAlgebra(F, a, b), with a, b in
F. It returns a list [F,F(ER(a)), [b]l] representing the cyclic algebra isomorphic to A.
> ConvertCyclicCyclotomicAlgToCyclicAlg(A) (operation)

Returns: A list of the form [F,X, [c]].

The input should be a list [r,F,n, [a,b,c]] representing a matrix ring over a cyclic cyclotomic
algebra. The function returns the list [F,F(E(n)), [E(n)~c]], which represents a cyclic algebra that
is Morita equivalent to the given cyclic cyclotomic algebra.

Example

gap> A:=QuaternionAlgebra(CF(5),-3,-1);
<algebra-with-one of dimension 4 over CF(5)>

gap> ConvertQuaternionAlgToQuadraticAlg(A);

[CF(5), CF(158), [-1 1 1]

gap> ConvertCyclicAlgToCyclicCyclotomicAlg(last);

[1, CF(5), 30, [2, 11, 1561]

gap> SchurIndex(last);

1

gap> ConvertCyclicCyclotomicAlgToCyclicAlg(last2);

[1, [CF(5), CF(15), [-1 111

gap> ConvertQuadraticAlgToQuaternionAlg(last[2]);
<algebra-with-one of dimension 4 over CF(5)>

gap> b:=Basis(last); b[1]"2; b[2]~2; b[3]"2; b[4]"2;
Basis(<algebra-with-one of dimension 4 over CF(5)>, ...)
e

(-3)*e

(-1)*e

(-3)*e

Chapter 8

Applications of the Wedderga package

8.1 Coding theory applications

8.1.1 CodeWordByGroupRingElement

> CodeWordByGroupRingElement (F, S, a) (operation)
Returns: The code word of length the length of S associated to the group ring element a.
The input F should be a finite field. The input S is a fixed ordering of a group G and a is an
element in the group algebra F'G.
Each element ¢ in FG is of the form ¢ = Y, figi, where we fix an ordering {g1,82,...,8,} of the

group elements of G and f; € F. If we look at ¢ as a codeword, we will write [f] f2...f,]. (9.23).
Example

gap> G:=DihedralGroup(8);;

gap> F:=GF(3);;

gap> FG:=GroupRing(F,G);;

gap> a:=AsList (FG) [27];

(Z(3)~0) *x<identity> of ...+(Z(3)~0)*£1+(Z(3)~0)*£2+(Z(3)~0)*£3+(Z(3)"
0) *£1%£2+(Z(3) ~0) x£2*£3+(Z(3)) *f 1x£2%£3

gap> S:=AsSet(G);

[<identity> of ..., f1, £2, £3, f1xf2, f1x£f3, £2*f3, f1*xf2*xf3]

gap> CodeWordByGroupRingElement (F,S,a) ;

[Z(3)~0, Z(3)~0, Z2(3)~0, Z(3)~0, Z(3)~0, 0%Z(3), Z(3)~0, Z(3)]

8.1.2 CodeByLeftldeal

> CodeByLeftIdeal(F, G, S, I) (operation)

Returns: All code words of length the length of S associated to the group ring elements in the
ideal I of FG.

The input F should be a finite field. The input S is a fixed ordering of a group G and I is a left
ideal of the group algebra FG.

Each element ¢ in FG is of the form ¢ = Y, figi, where we fix an ordering {g1,82,...,8,} of the

group elements of G and f; € F. If we look at ¢ as a codeword, we will write [f] f2...f,]. (9.23).
Example

gap> G:=DihedralGroup(8);;

58

Wedderga

gap> F:=GF(3);;

gap> FG:=GroupRing(F,G);;

gap> S:=AsSet(G);

[<identity> of ..., f1, £2, £3, f1xf2, f1x£f3, £2*f3, f1*f2*f3]

gap> H:=StrongShodaPairs(G) [5][1];

Group([f1*f2%£f3, £3 1)

gap> K:=StrongShodaPairs(G) [5] [2];

Group([f1*£f2])

gap> N:=Normalizer(G,K);

Group([f1*f2%f3, £3 1)

gap> epi:=NaturalHomomorphismByNormalSubgroup (N,K) ;

[f1xf2+£3, £3 1 -> [f1, f1]

gap> QHK:=Image(epi,H);

Group([f1, f1 1)

gap> gq:=MinimalGeneratingSet (QHK) [1];

f1

gap> C:=CyclotomicClasses(Size(F),Index(H,K)) [2];

(1]

gap> e:=PrimitiveIdempotentsNilpotent (FG,H,K,C, [epi,gql);

[(Z(3)~0)*<identity> of ...+(Z(3))*£3+(Z(3)~0)*f1*f2+(Z(3))*f1*f2*£3,
(Z(3)~0)*<identity> of ...+(Z(3))*£3+(Z(3))*£1*£2+(Z(3)~0)*f1*£2+£3]

gap> FGe := LeftIdealByGenerators(FG, [e[1]1]1);;

gap> V := VectorSpace(F,CodeByLeftIdeal (F,G,S,FGe));;

gap> B := Basis(V);;

gap> LoadPackage("guava");;

gap> code := GeneratorMatCode(B,F);

a linear [8,2,1..4]4..5 code defined by generator matrix over GF(3)

gap> MinimumDistance(code) ;

4

59

Chapter 9

The basic theory behind Wedderga

In this chapter we describe the theory that is behind the algorithms used by Wedderga.

All the rings considered in this chapter are associative and have an identity.

We use the following notation: Q denotes the field of rationals and [, the finite field of order g.
For every positive integer k, we denote a complex k-th primitive root of unity by & and so Q(&) is
the k-th cyclotomic extension of Q.

9.1 Group rings and group algebras

Given a group G and a ring R, the group ring RG over the group G with coefficients in R is the ring
whose underlying additive group is a right R—module with basis G such that the product is defined by
the following rule

(¢7)(hs) = (gh)(rs)

for r,s € Rand g,h € G, and extended to RG by linearity.
A group algebra is a group ring in which the coefficient ring is a field.

9.2 Semisimple group algebras

We say that a ring R is semisimple if it is a direct sum of simple left (alternatively right) ideals or
equivalently if R is isomorphic to a direct product of simple algebras each one isomorphic to a matrix
ring over a division ring.

By Maschke’s Theorem, if G is a finite group then the group algebra F'G is semisimple if and only
the characteristic of the coefficient field F' does not divide the order of G.

In fact, an arbitrary group ring RG is semisimple if and only if the coefficient ring R is semisimple,
the group G is finite and the order of G is invertible in R.

Some authors use the notion semisimple ring for rings with zero Jacobson radical. To avoid con-
fusion we usually refer to semisimple rings as semisimple artinian rings.

9.3 Wedderburn components

If R is a semisimple ring (9.2) then the Wedderburn decomposition of R is the decomposition of R
as a direct product of simple algebras. The factors of this Wedderburn decomposition are called

60

Wedderga 61

Wedderburn components of R. Each Wedderburn component of R is of the form Re for e a primitive
central idempotent (9.4) of R.

Let F G be a semisimple group algebra (9.2). If F has positive characteristic, then the Wedderburn
components of F'G are matrix algebras over finite extensions of F'. If F has zero characteristic then by
the Brauer-Witt Theorem [Yam74], the Wedderburn components of F'G are Brauer equivalent (9.5) to
cyclotomic algebras (9.11).

The main functions of Wedderga compute the Wedderburn components of a semisimple group
algebra F'G, such that the coefficient field is either an abelian number field (i.e. a subfield of a finite
cyclotomic extension of the rationals) or a finite field. In the finite case, the Wedderburn components
are matrix algebras over finite fields and so can be described by the size of the matrices and the size
of the finite field.

In the zero characteristic case each Wedderburn component A is Brauer equivalent (9.5) to a
cyclotomic algebra (9.11) and therefore A is a (possibly fractional) matrix algebra over cyclotomic
algebra and can be described numerically in one of the following three forms:

[, K],
[n7K’k7 [d7 a’ B]]?

[ana k, [dia (xhﬁi];'n:lv ['}/l}j]lSKan]’

where n is the matrix size, K is the centre of A (a finite field extension of F') and the remaining data
are integers whose interpretation is explained in 9.12.

In some cases (for the zero characteristic coefficient field) the size n of the matrix algebras is not a
positive integer but a positive rational number. This is a consequence of the fact that the Brauer-Witt
Theorem [Yam74] only ensures that each Wedderburn component (9.3) of a semisimple group algebra
is Brauer equivalent (9.5) to a cyclotomic algebra (9.11), but not necessarily isomorphic to a full matrix
algebra of a cyclotomic algebra. For example, a Wedderburn component D of a group algebra can be
a division algebra but not a cyclotomic algebra. In this case M, (D) is a cyclotomic algebra C for some
n and therefore D can be described as M/, (C) (see last Example in WedderburnDecomposition
(2.1.1)).

The main algorithm of Wedderga is based on a computational oriented proof of the Brauer-Witt
Theorem due to Olteanu [O1t07] which uses previous work by Olivieri, del Rio and Simén [OdRS04]
(see also [OdRO3]) for rational group algebras of strongly monomial groups (9.17). The algorithms
are also based upon the work of Bakshi and Maheshwary [BM14] (see also [BM16]) on the rational
group algebras of normally monomial groups (9.18).

9.4 Characters and primitive central idempotents

A primitive central idempotent of aring R is a non-zero central idempotent e which cannot be written
as the sum of two non-zero central idempotents of Re, or equivalently, such that Re is indecomposable
as a direct product of two non-trivial two-sided ideals.

The Wedderburn components (9.3) of a semisimple ring R are the rings of the form Re for e running
over the set of primitive central idempotents of R.

Let FG be a semisimple group algebra (9.2) and ¥ an irreducible character of G (in an algebraic
closure of F). Then there is a unique Wedderburn component A = Ar () of FG such that y(A) # 0.

Wedderga 62

Let er(x) denote the unique primitive central idempotent of FG in Ar()), that is the identity of

AF(X), ie.
Ar(x) = FGer(x).

The centre of A () is F(x) = F(x(g) : g € G), the field of character values of y over F.

The map x — Ar()) defines a surjective map from the set of irreducible characters of G (in an
algebraic closure of F) onto the set of Wedderburn components of FG.

Equivalently, the map) — ep()x) defines a surjective map from the set of irreducible characters
of G (in an algebraic closure of F') onto the set of primitive central idempontents of F'G.

If the irreducible character of G takes values in F' then

er() =) = XV ¥ 5.
o &

In general one has

er(x)=), elooy).
o€Gal(F(x)/F)

9.5 Central simple algebras and Brauer equivalence

Let K be a field. A central simple K-algebra is a finite dimensional K-algebra with center K which has
no non-trivial proper ideals. Every central simple K-algebra is isomorphic to a matrix algebra M, (D)
where D is a division algebra (which is finite-dimensional over K and has centre K). The division
algebra D is unique up to K-isomorphisms.

Two central simple K-algebras A and B are said to be Brauer equivalent, or simply equivalent, if
there is a division algebra D and two positive integers m and n such that A is isomorphic to M,,(D)
and B is isomorphic to M, (D).

9.6 Crossed Products

Let R be a ring and G a group.
INTRINSIC DEFINITION. A crossed product [Pas89] of G over R (or with coefficients in R) is a
ring R * G with a decomposition into a direct sum of additive subgroups

R+G=(PA,
geiG

such that for each g,/ in G one has:

* A| = R (here 1 denotes the identity of G),

* AgAh = Agh and

* Ag has a unit of R+ G.

EXTRINSIC DEFINITION. Let Aut(R) denote the group of automorphisms of R and let R* denote
the group of units of R.

Leta: G — Aut(R) and 7 : G x G — R* be mappings satisfying the following conditions for every
g, hand kin G:

(1) a(gh)~'a(g)a(h) is the inner automorphism of R induced by #(g,4) (i.e. the automorphism
x> t(g,h)"'xt(g,h)) and

(2) t(gh,k)t(g,h)* = t(g,hk)t(h,k), where for g € G and x € R we denote a(g)(x) by x4.

Wedderga 63

The crossed product [Pas89] of G over R (or with coefficients in R), action a and twisting ¢ is the
ring
R+, G =Pu,R
geG
where {u, : g € G} is a set of symbols in one-to-one correspondence with G, with addition and multi-
plication defined by

(ugr) + (ugs) = ug(r+s), (ugr)(ups) = ught(g,h)rhs

for g,h € G and r,s € R, and extended to R %/, G by linearity.

The associativity of the product defined is a consequence of conditions (1) and (2) [Pas89].

EQUIVALENCE OF THE TWO DEFINITIONS. Obviously the crossed product of G over R defined
using the extrinsic definition is a crossed product of G over u;R in the sense of the first definition.
Moreover, there is rp in R* such that u;ry is the identity of R %!, G and the map r — u;ror is a ring
isomorphism R — uR.

Conversely, let R+ G = P,c5Ag be an (intrinsic) crossed product and select for each g € G a
unit u, € Ay of R+ G. This is called a basis of units for the crossed product R* G. Then the maps
a:G— Aut(R) andt: G x G — R* given by

8= u;lrug, t(g,h) = u;hluguh (g,h € G,reR)

satisfy conditions (1) and (2) and R+ G = R+, G.

The choice of a basis of units u, € A, determines the action a and twisting 7. If {u, € A, : g € G}
and {vy € A, : g € G} are two sets of units of R+ G then v, = u,r, for some units r, of R. Changing the
basis of units results in a change of the action and the twisting and so changes the extrinsic definition
of the crossed product but it does not change the intrinsic crossed product.

It is customary to select u; = 1. In that case a(1) is the identity map of R and 7(1,g) =(g,1) =1
for each g in G.

9.7 Cyclic Crossed Products

Let R*G = @, A; be a crossed product (9.6) and assume that G = (g) is cyclic. Then the crossed
product can be given using a particularly nice description.

Select a unit u in Ag, and let a be the automorphism of R given by r* = ulru.

If G is infinite then set u = uk for every integer k. Then

R G = Rlu|ru = ur’],
a skew polynomial ring. Therefore in this case R * G is determined by
[R,a].
If G is finite of order d then set Ugk = uk for0 <k < d. Thenb=u? € R and
R*G = R[u|ru = ur®,u’ = b)
Therefore, R * G is completely determined by the following data:

R, [d,a,b]]

Wedderga 64

9.8 Abelian Crossed Products

Let R+ G = P, A, be a crossed product (9.6) and assume that G is abelian. Then the crossed product
can be given using a simple description.
Express G as a direct sum of cyclic groups:

G=(g1) XX {gn)

and foreach i =1,...,n select a unit u; in A,,.
Each element g of G has a unique expression

k
g=g\' g,
where k; is an arbitrary integer, if g; has infinite order, and 0 < k; < d,, if g; has finite order d;. Then
one selects a basis for the crossed product by taking

_ _ kK ks,
Ug =Ujy o = T T
* Foreachi=1,...,n, let a; be the automorphism of R given by r% = ui’lrui.
*Foreach1 <i< j<n,lett;;= u;lui_lu‘,ui €R.
* If g; has finite order d;, let b; = u?i €R.
Then

RxG =Ruy,... . uy|ru; = wir" uju; :tijuiu.,-,ufl" =b;i(1<i<j<n),

where the last relation vanishes if g; has infinite order.
Therefore R * G is completely determined by the following data:

R, [di, ai, bili_y, [ti jl1<i< j<n]-

9.9 C(lassical crossed products

A classical crossed product is a crossed product L +!, G, where L/K is a finite Galois extension, G =
Gal(L/K) is the Galois group of L/K and a is the natural action of G on L. Then ¢ is a 2-cocycle and
the crossed product (9.6) L+, G is denoted by (L/K,t). The crossed product (L/K,t) is known to be
a central simple K-algebra [Rei03].

9.10 Cyclic Algebras

A cyclic algebra is a classical crossed product (9.9) (L/K,t) where L/K is a finite cyclic field exten-
sion. The cyclic algebras have a very simple form.

Assume that Gal(L/K) is generated by g and has order d. Let u = u, be the basis unit (9.6) of
the crossed product corresponding to g and take the remaining basis units for the crossed product
by setting u,i = u',(i=0,1,...,d —1). Then a = u" € K. The cyclic algebra is usually denoted by
(L/K,a) and one has the following description of (L/K,1)

(L/K,t) = (L/K,a) = Llu|ru = ur®,u’ = a.

Wedderga 65

9.11 Cyclotomic algebras

A cyclotomic algebra over F is a classical crossed product (9.9) (F(&)/F,t), where F is a field, & is
a root of unity in an extension of F and 7(g, &) is a root of unity for every g and 4 in Gal(F (§)/F).

The Brauer-Witt Theorem [Yam74] asserts that every Wedderburn component (9.3) of a group
algebra is Brauer equivalent (9.5) (over its centre) to a cyclotomic algebra.

9.12 Numerical description of cyclotomic algebras

Let A = (F(&)/F,t) be a cyclotomic algebra (9.11), where & = & is a k-th root of unity. Then the
Galois group G = Gal(F(&)/F) is abelian and therefore one can obtain a simplified form for the
description of cyclotomic algebras as for any abelian crossed product (9.8).
Then the n x n matrix algebra M, (A) can be described numerically in one of the following forms:
*If F(E)=F, (i.e. G=1) then A = M, (F) and thus the only data needed to describe A are the
matrix size n and the field F:
n,F]

*If G is cyclic (but not trivial) of order d then A is a cyclic cyclotomic algebra
A=F(&)ulgu=ug*u' = &P
and so M, (A) can be described with the following data
[, F.k,[d, o, B]],
where the integers k, d, o and B satisfy the following conditions:
a’=1modk, B(o—1)=0modk.
*If G is abelian but not cyclic then M, (A) can be described with the following data (see 9.8):
[, Fok,[di; 0, BiliZ 1 [] <ic <]
representing the n X n matrix ring over the following algebra:
A=F(&E)ur,...,um | Eui = ;X u?" =EP wau, =E%uu,, i=1,....m, 0<r<s<m|

where
*{g1,...,gm} is an independent set of generators of G,
* d; is the order of g;,
* oy, B; and ¥, are integers, and

égi — gai_

Wedderga 66

9.13 Idempotents given by subgroups

Let G be a finite group and F a field whose characteristic does not divide the order of G. If H is a
subgroup of G then set
H=H"Y x
xeH
The element H is an idempotent of F'G which is central in FG if and only if H is normal in G.
If H is a proper normal subgroup of a subgroup K of G then set

~

e(K.H)=[](N-L)

L

where L runs on the normal subgroups of K which are minimal among the normal subgroups of K
containing N properly. By convention, £(K,K) = K. The element €(K,H) is an idempotent of FG.

If H and K are subgroups of G such that H is normal in K then ¢(G,K,H) denotes the sum of
all different G-conjugates of €(K,H). The element ¢(G,K,H) is central in FG. In general it is not
an idempotent but if the different conjugates of €(K,H) are orthogonal then ¢(G,K,H) is a central
idempotent of F'G.

If (K,H) is a Shoda Pair (9.14) of G then there is a non-zero rational number a such that
ae(G,K,H)) is a primitive central idempotent (9.4) of the rational group algebra QG. If (K,H) is
a strong Shoda pair (9.15) of G then ¢(G, K, H) is a primitive central idempotent of QG.

Assume now that F is a finite field of order ¢, (K,H) is a strong Shoda pair of G and C is a
cyclotomic class of K/H containing a generator of K/H. Then ec(G,K,H) is a primitive central
idempotent of FG (see 9.19).

9.14 Shoda pairs of a group

Let G be a finite group. A Shoda pair of G is a pair (K, H) of subgroups of G for which there is a linear
character ¥ of K with kernel H such that the induced character ¥ in G is irreducible. By [Sho33] or
[OdRS04], (K,H) is a Shoda pair if and only if the following conditions hold:

* H is normal in K,

* K/H is cyclic and

*if KSNK C H for some g € G then g € K.

If (K,H) is a Shoda pair and y is a linear character of K < G with kernel H then the primitive
central idempotent (9.4) of QG associated to the irreducible character xG is of the form e = eg(xG) =
ae(G,K,H) for some a € Q [OdRS04] (see 9.13 for the definition of ¢(G,K,H)). In that case we say
that e is the primitive central idempotent realized by the Shoda pair (K,H) of G.

A group G is monomial, that is every irreducible character of G is monomial, if and only if every
primitive central idempotent of QG is realizable by a Shoda pair of G.

9.15 Strong Shoda pairs of a group

A strong Shoda pair of G is a pair (K, H) of subgroups of G satisfying the following conditions:
* H is normal in K and K is normal in the normalizer N of H in G,
* K/H is cyclic and a maximal abelian subgroup of N/H and
* for every g € G\ N, €(K,H)e(K,H)$ = 0. (See 9.13 for the definition of €(K,H)).

Wedderga 67

Let (K,H) be a strong Shoda pair of G. Then (K,H) is a Shoda pair (9.14) of G. Thus there
is a linear character @ of K with kernel H such that the induced character ¥ = ¥(G,K,H) = 8¢
is irreducible. Moreover the primitive central idempotent (9.4) eq(y) of QG realized by (K,H) is
e(G,K,H), see [OdRS04].

Two strong Shoda pairs (9.15) (K1, H,) and (K3, H,) of G are said to be equivalent if the characters
x(G,Ky,H) and x(G,K>,H,) are Galois conjugate, or equivalently if e(G,K;,H;) = e(G,Kz,H>). A
set of representatives of strong Shoda pairs of G is termed as a complete irredundant set of strong
Shoda pairs of G.

The advantage of strong Shoda pairs over Shoda pairs is that one can describe the simple algebra
FGep()x) as a matrix algebra of a cyclotomic algebra (9.11, see [OdRS04] for F = Q and [O1t07] for
the general case).

More precisely, QGe(G, K, H) is isomorphic to M,(Q(&) !, N/K), where & is a [K : H|-th root of
unity, N is the normalizer of H in G, n =[G : N] and Q(&) #, N/K is a crossed product (see 9.6) with
action a and twisting ¢ given as follows:

Let x be a fixed generator of K/H and ¢ : N/K — N/H a fixed left inverse of the canonical
projection N/H — N /K. Then

ga(r) _ éi, ifx(p(r) —

and . '
t(r,s) =&/, if @(rs) "' o(r)o(s) =¥/,

for r,s € N/K and integers i and j, see [OdRS04]. Notice that the cocycle is the one given by the
natural extension
1—-K/H—-N/H—-N/K—1

where K /H is identified with the multiplicative group generated by &. Furthermore the centre of the
algebra is Q(y), the field of character values over Q, and N/K is isomorphic to Gal(Q(§)/Q(x)).

If the rational field is changed to an arbitrary ring F of characteristic O then the Wedderburn
component Ar(y), where ¥ = x(G,K,H) is isomorphic to F()) ®q(,)Ag(x). Using the description
given above of Ag(x) = QGe(G,K,H) one can easily describe Ap()) as M,q(F(§)/F(x),t’), where
d=[Q(&):Q(x)]/[F(&):F(x)] and ' is the restriction to Gal(F(&)/F(x)) of t (a cocycle of N/K =
Gal(Q(E)/Q(x))).

9.16 Extremely strong Shoda pairs of a group

An extremely strong Shoda pair of G is a pair (K,H) of subgroups of G satisfying the following
conditions:

* K is normal in G,

* K /H is cyclic and a maximal abelian subgroup of N/H, where N is the normalizer of H in G.

Let (K,H) be an extremely strong Shoda pair of G. Then (K,H) is a strong Shoda pair (9.15)
of G, with K normal in G [BM14], so that there is a linear character 6 of K with kernel H such that
the induced character ¥ = x(G,K,H) = 09 is irreducible. Moreover, the primitive central idempotent
e(x) of QG realized by (K,H) is e(G,K,H) (9.4) and one can describe the associated simple algebra
(9.15). Two extremely strong Shoda pairs of G are said to be equivalent if they are equivalent as strong
Shoda pairs (9.15). A set of representatives of extremely strong Shoda pairs of G is called a complete
irredundant set of extremely strong Shoda pairs of G [BM14].

If G is a normally monomial group (9.18), then the set of primitive central idempotents of the
rational group algebra realized by strong Shoda pairs of G is same as the one realized by extremely

Wedderga 68

strong Shoda pairs of G [BM14]. The algorithm to compute a complete irredundant set of extremely
strong Shoda pairs of G has been explained in [BM16].

9.17 Strongly monomial characters and strongly monomial groups

Let G be a finite group an y an irreducible character of G.

One says that ¥ is strongly monomial if there is a strong Shoda pair (9.15) (K,H) of G and a linear
character 0 of K of G with kernel H such that y = 6.

The group G is strongly monomial if every irreducible character of G is strongly monomial.

Strong Shoda pairs where firstly introduced by Olivieri, del Rio and Simén who proved that ev-
ery abelian-by-supersolvable group is strongly monomial [OdRS04]. The algorithm to compute the
Wedderburn decomposition of rational group algebras for strongly monomial groups was explained in
[OdRO3]. This method was extended for semisimple finite group algebras by Broche Cristo and del
Rio in [BARO7] (see Section 9.19). Finally, Olteanu [O1t07] shows how to compute the Wedderburn
decomposition (9.3) of an arbitrary semisimple group ring by making use of not only the strong Shoda
pairs of G but also the strong Shoda pairs of the subgroups of G.

9.18 Normally monomial characters and normally monomial groups

Let G be a finite group and ¥ be an irreducible character of G.

One says that y is normally monomial if there is a normal subgroup K of G such that ¥ is induced
from a linear character of K.

The group G is normally monomial if every irreducible character of G is normally monomial.
Bakshi and Maheshwary proved that if G is a normally monomial group, then for every irreducible
character y of G, there exists an extremely strong Shoda pair (K, H) of G (9.16) such that y = 69,
where 0 is a linear character of K with kernel H [BM14].

Wedderga 69

9.19 Cyclotomic Classes and Strong Shoda Pairs

Let G be a finite group and F a finite field of order ¢, coprime to the order of G.

Given a positive integer n, coprime to g, the g-cyclotomic classes modulo n are the set of residue
classes module 7 of the form

{i,ig,iq*,iq,...}

The g-cyclotomic classes module 7 form a partition of the set of residue classes module 7.

A generating cyclotomic class module n is a cyclotomic class containing a generator of the addi-
tive group of residue classes module n, or equivalently formed by integers coprime to n.

Let (K,H) be a strong Shoda pair (9.15) of G and set n = [K : H]. Fix a primitive n-th root of
unity & in some extension of F and an element g of K such that gH is a generator of K/H. Let C be a
generating g-cyclotomic class modulo n. Then set

n—1
ec(K,H) = [K:H)"'H Y 1r(6~")g'
i=0

where ¢ is an arbitrary element of C and #r is the trace map of the field extension F(&)/F. Then
ec(K,H) does not depend on the choice of ¢ € C and is a primitive central idempotent (9.4) of FK.

Finally, let ec(G,K,H) denote the sum of the different G-conjugates of e-(K,H). Then
ec(G,K,H) is a primitive central idempotent (9.4) of FG [BARO7]. We say that ec(G,K,H) is the
primitive central idempotent realized by the strong Shoda pair (K,H) of the group G and the cyclo-
tomic class C.

If G is strongly monomial (9.17) then every primitive central idempotent of FG is realizable by
some strong Shoda pair (9.15) of G and some cyclotomic class C [BdRO7]. As in the zero char-
acteristic case, this explain how to compute the Wedderburn decomposition (9.3) of FG for a finite
semisimple algebra of a strongly monomial group (see [BdR0O7] for details). For non strongly mono-
mial groups the algorithm to compute the Wedderburn decomposition just uses the Brauer characters.

Wedderga 70

9.20 Theory for Local Schur Index and Division Algebra Part Calcula-
tions

(By Allen Herman, May 2013. Updated October 2014.)

The division algebra parts of simple algebras in the Wedderburn Decomposition of the group
algebra of a finite group over an abelian number field F correspond to elements of the Schur Subgroup
S(F) of the Brauer group of F. Like all classes in the Brauer group of an algebraic number field F,
the division algebra part of a representative of a given Brauer class is determined up to F-algebra
isomorphism by its list of local Hasse invariants at all primes (i.e. places) of F'. The local invariant at
a prime P of F is a lowest terms fraction r/mp whose denominator is the local Schur index mp of the
simple algebra at the prime g (see [Rei03]). For division algebras whose Brauer class lies in the Schur
Subgroup of an abelian number field F, the local indices at any of the primes P lying over the same
rational prime p are equal to the same positive integer m,, and the numerator of the local invariants
among these primes are uniformly distributed among the integers r coprime to m,, [BS72].

The local Schur index functions in wedderga produce a list of the nontrivial local indices of the
division algebra part of the simple algebra at all rational primes. The Schur index of the simple algebra
over F is the least common multiple m of these local indices, and the dimension of the division algebra
part of the simple algebra over F is m?. While not sufficient to identify these division algebras up to
ring isomorphism in general, this list of local indices does identify the division algebra up to ring
isomorphism whenever there is no pair of local indices at odd primes that are greater than 2. (This
is at least the case for groups of order less than 3~2*7*13.) So it gives the information desired in
most basic situations, and allows one to distinguish almost all pairs of simple components of group
algebras.

Wedderga’s functions compute local indices for generalized quaternion algebras defined over the
rationals and cyclotomic algebras defined over any abelian number field. Special shortcut functions are
available for cyclic cyclotomic algebras. There are also versions of the functions that compute the local
and global Schur index of a character of a finite group over a given abelian number field. The steps
in the general character- theoretic method involve 1) a Brauer-Witt reduction to a cyclic-by-abelian
group, 2) use of the Frobenius-Schur indicator to compute the local index at infinity, 3) computing
the p-local index for an ordinary irreducible character y of a p-solvable group using the values of an
irreducible Brauer character in the same p-block in cases where the p-defect group of ¥ is cyclic, and
4) use of Riese and Schmid’s characterization of dyadic Schur groups ([Sch94] and [RS96]) to handle
the exceptional cases where step 3) is not available. Our approach to rational quaternion algebras is
the standard one given, for example, in [Pie82]. The Legendre symbol operation in GAP is used to
determine the local index at odd primes. The local index of the generalized quaternion algebra (a,b)
over Q at the infinite prime will be 2 if both a and b are negative, and otherwise 1. We avoid the
complicated case of quadratic reciprocity when working over Q by using the Hasse-Brauer-Albert-
Noether Theorem ([Rei03], pg. 276): since we know the other primes of Q where the local index is 2,
it determines the local index at the prime 2. For generalized quaternion algebras over number fields F
other than Q, we have to convert to cyclic or cyclic cyclotomic algebras and use the other local index
functions, or appeal to a number theory system outside of GAP that can solve norm equations.

There are three shortcut functions used to compute local indices of cyclic cyclotomic algebras,
which wedderga’s -Info functions produce in the form [r,F,n,[a,b,c]|. The local index at infinity
is calculated by determining if the real completion of the corresponding algebra will produce a real

Wedderga 71

quaternion algebra. In order to do this, F must be a real subfield, n must be strictly greater than 2, and
E(n)¢ (which has to be a root of unity in F') must be —1. These facts can be checked directly, so this
is faster than calculating the character table of the group and checking the value of a Frobenius-Schur
indicator. The shortcut to calculate the local index of a cyclic cyclotomic algebra at an odd prime
makes direct use of the following lemma of Janusz: If E,,/F), is a Galois extension of p-local fields
with ramification index e, and z is a root of unity with order prime to p, then z is a norm in E, /F),
if and only if it is the e-th power of a root of unity in F. ([Jan75], pg. 535). It follows that in order
to calculate the local index at p of a cyclic cyclotomic algebra [r, F,n,[a,b,c]], we first determine the
splitting degree, residue degree, and ramification index e of the extension F({,)/F at p. Comparing
the behaviour of the Galois automorphism o} to the behaviour of the Frobenius automorphism at
p allows us to determine the order of the largest root of unity z with order coprime to p in the p-
completion F),. The local index m,, is then the least power of E(n) that lies in the group generated by
z.

Calculation of the local index at the prime 2 makes use of the following consequence of ([Jan75],
Theorem 5): A cyclic cyclotomic algebra [r, F>,n, [a,b,c|] over a 2-local field F, that is a subfield of
a cyclotomic extension of the rational 2-local field O, has Schur index at most 2. It has Schur index
2 if and only if 4 divides n, F>({,) is totally ramified of degree 2, the Galois automorphism o, of
F>(&,)/F, inverts all 2-power roots of unity in F>((,), the order of E(n) is 2 times an odd number,
and (F> : Q») is odd. The same approach to cyclotomic reciprocity makes it possible to check all of
these conditions in the 2-local situation.

The wedderga function that computes the p-local index of an ordinary irreducible character y of a
finite non-nilpotent cyclic-by- abelian group G is based directly on a theorem of Benard [Ben76] that
applies whenever the p-defect group of ¥ is cyclic. We have to restrict our application of it to groups
whose orders are small because the GAP records for irreducible Brauer characters are only available
in these cases. In order to use this approach effectively, we developed a function that computes the
defect group of the block containing a given ordinary irreducible character . This function makes use
of the Min half of Brauer’s Min-Max theorem (see Theorem 4.4 of [Nav98]), and thus is able to find
the defect group directly from the ordinary character table. It is thus available for nonsolvable groups,
even in cases where GAP’s Brauer character records are not available. We are indebted to Michael
Geline and Friederich Ladisch for discussions concerning the calculation of defect groups in GAP.
The current algorithm we use is based on an approach suggested by Ladisch.

9.21 Obtaining Algebras with structure constants as terms of the Wed-
derburn decomposition

Some users may find it desirable to have an alternative description for the components of the Wedder-
burn decomposition of a group ring as algebras with structure constants, because the operations for
algebras in GAP are designed for algebras with structure constants. We have provided such an algo-
rithm that converts the output of WedderburnDecompositionInfo (2.1.2) into algebras with struc-
ture constants. Matrix rings over fields are converted directly. For components that are cyclotomic
algebras, it calculates their defining group and defining character using those Wedderga operations,
then uses IrreducibleRepresentationsDixon (Reference: IrreducibleRepresentationsDixon)
to obtain matrix generators of an algebra isomorphic to the simple component corresponding to the
character over a suitable field. An algebra with structure constants version of this is finally obtained
by applying IsomorphismSCAlgebra (Reference: IsomorphismSCAlgebra w.r.t. a given basis) to
this algebra.

Wedderga 72

9.22 A complete set of orthogonal primitive idempotents

When R is a semisimple ring, then every left ideal L of R is of the form L = Re, where e is an idem-
potent of R. Therefore, we can use the idempotents to characterize the decompositions of semisimple
rings as a direct sum of minimal left ideals. In particular, let R = @®_,L; be a decomposition of a
semisimple ring as a direct sum of minimal left ideals. Then, there exists a family {ej,...,e} of ele-
ments of R such that: each e; # 0 is an idempotent element, if i # j, then e;e; =0, 1 =e; +---+¢, and
each e; cannot be written as e; = ¢} + ¢/, where ¢}, ¢/ are idempotents such that ¢/, e} # 0 and €}/ =0,
1 <i <. Conversely, if there exists a family of idempotents {ej, ... e} satisfying the previous condi-
tions, then the left ideals L; = Re; are minimal and R = ®/_,L;. Such a set of idempotents is called a
complete set of orthogonal primitive idempotents of the ring R. Such a set is not uniquely determined.

Let IF be a finite field and G a finite nilpotent group such that FG is semisimple. Let (H,K)
be a strong Shoda pair of G, C € €(H/K) and set ec = ec(G,H,K), &c = ec(H,K), H/K = (a),
E=Eg(H/K). Let E;/K and H, /K = (a;) (respectively Ey /K and Hy /K = (ay)) denote the 2-parts
(respectively 2’-parts) of E/K and H/K respectively. Then (ay) has a cyclic complement (by) in
E» /K. Using the description of the primitive central idempotents and the Wedderburn components
of a semisimple finite group algebra F'G (9.19), a complete set of orthogonal primitive idempotents
of FGec is described (see [OVGI11]) as the set of conjugates of B.. = by Pr€c by the elements of
T, = Ty T>Tg, where Ty = {l,azf,a%,, ... ,a[fz':Hz/]*l}, Tk denotes a right transversal of E in G and f3,
and 7, are given according to the cases below.

1. If H,/K has a complement M, /K in E,/K then [, = Af/\l/z Moreover, if M, /K is cyclic, then
there exists by € E; such that E; /K is given by the following presentation
(@b @ =h" =1.@"” =1"),
and if M, /K is not cyclic, then there exist b, ¢ € E; such that E; /K is given by the following
presentation
(@6 | @Y =h? =G =L@ =a" " =a " [hal =1),
with r = 1 mod4 (or equivalently cTzzH is central in E, /K). Then

@ = {l,az,a%, . ,a%kil}, if 0—22"*2 is central in E; /K (unless n < 1) and M, /K is cyclic;
and

— n— n— n—2 — .
(b) I = {l,az,a%,...,ag/Z 1,a% z,ag 2+1,...,a§ /2 1}, where d = [E; : H], otherwise.
2. If H, /K has no complement in E, /K, then there exist b, ¢, € E; such that E, /K is given by the
following presentation

n—1

T ==2" _ 2k , — —by _ —r —C5 __ ——1 [—
(@b, x| @™ =by” =1, =" @*=a" a%=a b, =1),

-2 -2
1 -‘rxa%n +ya%n (&3
2

with r = 1 mod4. In this case, B, = b and

2 2k—1 2 2k—1
L ={l,a,a3,...,a5 ' ,c2,c2a2,C245,...,¢2a5 },

with x,y € F, satisfying x> +y> = —1 and y # 0.

Wedderga 73

When G is not nilpotent, we can still use the following description in some specific cases. Let G be
a finite group and F a finite field of order s such that s is coprime to the order of G. Let (H,K) be a
strong Shoda pair of G such that t(gH,g'H) =1 for all g,¢' € E = EG(H/K), and let C € € (H/K).
Let € = &c(H,K) and e = ec(G,H,K) (9.19). Let w be a normal element of Fy /F /) (With o the
multiplicative order of s modulo [H : K]) and B the normal basis determined by w. Let y be the
isomorphism between FE¢€ and the matrix algebra Mg (IF o/) With respect to the basis B as stated
in Corollary 29.8 in [Rei03]. Let P,A € Mg (F iz) be the matrices

1 1 1 -« 1 1 00 --- 01

1 -1 0 -~ 0 ©0 10 00

1 o -1 --- 0 0 1 0 0
P=| .) .)) and A=)

1 0 O -1 0 00 0

1 0 O 0 —1 00 10

Then
{(xTiex™' | x € T (x.)}

is a complete set of orthogonal primitive idempotents of FGe where x, = w~! (PAP~!), T} is a transver-
sal of H in E and T is a right transversal of E in G ([OVGnt]). By 71 we denote the element ﬁ Yien t
in FG.

9.23 Applications to coding theory

A linear code of length n and rank k is a linear subspace C with dimension & of the vector space Fy.
The standard basis of Iy is denoted by E = {ey, ...,e, }. The vectors in C are called codewords, the size
of a code is the number of codewords and equals ¢*. The distance of a code is the minimum distance
between distinct codewords, i.e. the number of elements in which they differ.

For any group G, we denote by IF,G the group algebra over G with coefficients in ;. If G is a
group of order n and C C Iy is a linear code, then we say that C is a left G-code (respectively a G-code)
if there is a bijection ¢ : E — G such that the linear extension of ¢ to an isomorphism ¢ : Fy — F,G
maps C to a left ideal (respectively a two-sided ideal) of F,G. A left group code (respectively a group
code) is a linear code which is a left G-code (respectively a G-code) for some group G.

Since left ideals in [F,G are generated by idempotents, there is a one-one relation between (sums
of) primitive idempotents of IF,G and left G-codes over IF,.

Note that each element ¢ in F,G is of the form ¢ = Y}, fig;, where we fix an ordering
{81,82,...,8n} of the group elements of G and f; € F,. If one looks at ¢ as a codeword, one writes

[f1f2fn]

References

[BARO7]

[Ben76]

[BM14]

[BM16]

[BS72]

[Jan75]

[Nav9sg]

[OdRO3]

[OdRS04]

[O1t07]

[OVG11]

[OVGnt]

[Pas89]

[Pie82]

O. Broche and A. del Rio. Wedderburn decomposition of finite group algebras. Finite
Fields Appl., 13(1):71-79, 2007. 68, 69

M. Benard. Schur indices and cyclic defect groups. Ann. of Math. (2), 103(2):283-304,
1976. 71

G. K. Bakshi and S. Maheshwary. The rational group algebra of a normally monomial
group. J. Pure Appl. Algebra, 218(9):1583-1593, 2014. 7, 61, 67, 68

G. K. Bakshi and S. Maheshwary. Extremely strong Shoda pairs with GAP. J. Symbolic
Comput., 76(9):97-106, 2016. 7, 61, 68

M. Benard and M. Schacher. The schur subgroup. ii. J. Algebra, 22(1):378-385, 1972. 70

G. Janusz. Generators for the schur group of local and global number fields. Pacific J.
Math., 56(2):525-546, 1975. 71

G. Navarro. Characters and Blocks of Finite Groups, volume 250 of Lecture Note Series.
London Mathematical Society, Cambridge, UK, 1998. 71

A. Olivieri and A. del Rio. An algorithm to compute the primitive central idempotents
and the Wedderburn decomposition of a rational group algebra. J. Symbolic Comput.,
35(6):673-687, 2003. 7, 61, 68

A. Olivieri, A. del Rio, and J. J. Simén. On monomial characters and central idempotents
of rational group algebras. Comm. Algebra, 32(4):1531-1550, 2004. 7, 61, 66, 67, 68

G. Olteanu. Computing the Wedderburn decomposition of group algebras by the Brauer-
Witt theorem. Math. Comp., 76(258):1073—-1087 (electronic), 2007. 7, 61, 67, 68

G. Olteanu and I. Van Gelder. Finite group algebras of nilpotent groups: A complete set
of orthogonal primitive idempotents. Finite Fields Appl., 17(2):157-165, 2011. 72

G. Olteanu and I. Van Gelder. Construction of minimal non-abelian left group codes.
preprint. 73

D. S. Passman. Infinite crossed products, volume 135 of Pure and Applied Mathematics.
Academic Press Inc., Boston, MA, 1989. 62, 63

R. S. Pierce. Associative Algebras, volume 88 of Graduate Texts in Mathematics. Springer
Verlag, New York - Berlin, 1982. 70

74

[Rei03]

[RS96]

[Sch94]
[Sho33]

[Yam74]

Wedderga 75

I. Reiner. Maximal orders, volume 28 of London Mathematical Society Monographs. New
Series. The Clarendon Press Oxford University Press, Oxford, 2003. Corrected reprint of
the 1975 original, With a foreword by M. J. Taylor. 12, 64, 70, 73

U. Riese and P. Schmid. Schur indices and schur groups, ii. J. Algebra, 182(1):183-200,
1996. 70

P. Schmid. Schur indices and schur groups. J. Algebra, 169(15):226-247, 1994. 70

K. Shoda. Uber die monomialen Darstellungen einer endlichen Gruppe. Proc. Phys.-Math.
Soc. Japan, 111(15):249-257, 1933. 66

T. Yamada. The Schur subgroup of the Brauer group. Springer-Verlag, Berlin, 1974.
Lecture Notes in Mathematics, Vol. 397. 7, 61, 65

Index

e(K,H), 66
¢(G,K,H), 66
ec(G,K,H), 66

Abelian Crossed Product, 64
ActionForCrossedProduct, 30
AntiSymMatUpMat, 45
AverageSum, 38

Basis of units (for crossed product), 63
(Brauer) equivalence, 62
\"~, 37

central simple algebra, 62

Centralizer, 37

CharacterDescent, 45

Classical Crossed Product, 64

CodeByLeftIdeal, 58

CodeWordByGroupRingElement, 58

CoefficientsAndMagmaElements, 34

Complete set of orthogonal primitive idempo-
tents, 72

ConvertCyclicAlgToCyclicCyclotomicAlg,
56

ConvertCyclicCyclotomicAlgToCyclicAlg,
57

ConvertQuadraticAlgToQuaternionAlg, 56

ConvertQuaternionAlgToQuadraticAlg, 57

Crossed Product, 62

CrossedProduct, 27

Cyclic Algebra, 64

Cyclic Crossed Product, 63

Cyclotomic algebra, 65

cyclotomic class, 69

CyclotomicAlgebraAsSCAlgebra, 42

CyclotomicAlgebraWithDivAlgPart, 41

CyclotomicClasses, 38

CyclotomicExtensionGenerator, 45

DecomposeCyclotomicAlgebra, 55

76

DefectGroupOfConjugacyClassAtP, 51
DefectGroups0fPBlock, 51
DefectOfCharacterAtP, 51
DefiningCharacterOfCyclotomicAlgebra,
50
DefiningGroupAndCharacter0fCyclotAlg,
50
DefiningGroupOfCyclotomicAlgebra, 50

Element0fCrossedProduct, 34
Embedding, 34

equivalence (Brauer), 62

equivalent extremely strong Shoda pairs, 67
equivalent strong Shoda pairs, 67
extremely strong Shoda pair, 67
ExtremelyStrongShodaPairs, 17

field of character values, 61
FinFieldExt, 51

GaloisRepsOfCharacters, 46

generating cyclotomic class, 69
GlobalCharacterDescent, 45
GlobalSchurIndexFromLocalIndices, 53
GlobalSplitting0fCyclotomicAlgebra, 45
group algebra, 60

group code, 73

group ring, 60

InfoWedderga, 39
IsCompleteSet0fOrthogonalIldempotents,
21
IsCrossedProduct, 27
IsCrossedProductObjDefaultRep, 34
IsCyclotomicClass, 39
IsDyadicSchurGroup, 53
IsElement0fCrossedProduct, 34
IsExtremelyStrongShodaPair, 18
IsNormallyMonomial, 20

Wedderga

IsRationalQuaternionAlgebraADivision-
Ring, 54

IsSemisimpleANFGroupAlgebra, 36

IsSemisimpleFiniteGroupAlgebra, 36

IsSemisimpleRationalGroupAlgebra, 35

IsSemisimpleZeroCharacteristicGroup-
Algebra, 35

IsShodaPair, 19

IsStronglyMonomial, 20

IsStrongShodaPair, 19

IsTwistingTrivial, 36

KillingCocycle, 45

LeftActingDomain, 30
linear code, 73
LocalIndexAtInfty, 48
LocalIndexAtInftyByCharacter, 50
LocalIndexAt0ddP, 48
LocalIndexAt0ddPByCharacter, 53
LocalIndexAtPByBrauerCharacter, 51
LocalIndexAtTwo, 48
LocalIndexAtTwoByCharacter, 53
LocalIndices0fCyclicCyclotomicAlgebra,
47
LocalIndices0fCyclotomicAlgebra, 48
LocalIndicesOfRationalQuaternion-
Algebra, 53
LocalIndicesOfRationalSymbolAlgebra, 53
LocalIndicesOfTensorProductOf-
QuadraticAlgs, 53

normally monomial character, 68
normally monomial group, 68

OnPoints, 37

PDashPart0fN, 43

PPartOfN, 43

primitive central idempotent, 61

primitive central idempotent realized by a Shoda
pair, 66

primitive central idempotent realized by a strong
Shoda pair and a cyclotomic class, 69

PrimitiveCentralldempotentsBy-
CharacterTable, 21

PrimitiveCentralIldempotentsByESSP, 22

PrimitiveCentralIldempotentsBySP, 24

77

PrimitiveCentralIdempotentsByStrongSP,
23
PrimitiveIdempotentsNilpotent, 25
PrimitiveIdempotentsTrivialTwisting, 26
PSplitSubextension, 43

Quaternion algebra, 32

RamificationIndexAtP, 44
ReducingCyclotomicAlgebra, 45
ResidueDegreeAtP, 44
Root0fDimension0fCyclotomicAlgebra, 49

SchurIndex, 41
SchurIndexByCharacter, 41
semisimple ring, 60
Shoda pair, 66
SimpleAlgebraByCharacter, 14
SimpleAlgebraByCharacterInfo, 14
SimpleAlgebraByStrongSP

for rational group algebra, 15

for semisimple finite group algebra, 15
SimpleAlgebraByStrongSPInfo

for rational group algebra, 16

for semisimple finite group algebra, 16
SimpleAlgebraByStrongSPInfoNC

for rational group algebra, 16

for semisimple finite group algebra, 16
SimpleAlgebraByStrongSPNC

for rational group algebra, 15

for semisimple finite group algebra, 15
SimpleComponentByCharacterAsSCAlgebra,

42
SimpleComponentByCharacterDescent, 45
SimpleComponent0fGroupRingByCharacter,
50

strongly monomial character, 68
strongly monomial group, 68
SplittingDegreeAtP, 44
strong Shoda pair, 66
StrongShodaPairs, 18

TwistingForCrossedProduct, 30
UnderlyingMagma, 30

Wedderburn components, 60
Wedderburn decomposition, 60

Wedderga

WedderburnDecomposition, 9

WedderburnDecompositionAsSCAlgebras, 42

WedderburnDecompositionByCharacter-
Descent, 47

WedderburnDecompositionInfo, 11

WedderburnDecompositionWithDivAlg-
Parts, 40

Wedderga package, 2

ZeroCoefficient, 34

78

	Introduction
	General aims of Wedderga package
	Installation and system requirements
	Main functions of Wedderga package

	Wedderburn decomposition
	Wedderburn decomposition of a group algebra
	Simple quotients

	Shoda pairs
	Computing extremely strong Shoda pairs
	Computing strong Shoda pairs
	Properties related with Shoda pairs

	Idempotents
	Computing idempotents from character table
	Testing lists of idempotents for completeness
	Idempotents from Shoda pairs
	Complete set of orthogonal primitive idempotents from Shoda pairs and cyclotomic classes

	Crossed products and their elements
	Construction of crossed products
	Crossed product elements and their properties

	Useful properties and functions
	Semisimple group algebras of finite groups
	Operations with group rings elements
	Cyclotomic classes
	Other commands

	Functions for calculating Schur indices and identifying division algebras
	Main Schur Index and Division Algebra Functions
	Cyclotomic Reciprocity Functions
	Global Splitting and Character Descent Functions
	Local index functions for Cyclic Cyclotomic Algebras
	Local index functions for Non-Cyclic Cyclotomic Algebras
	Local index functions for Rational Quaternion Algebras
	Functions involving Cyclic Algebras

	Applications of the Wedderga package
	Coding theory applications

	The basic theory behind Wedderga
	Group rings and group algebras
	Semisimple group algebras
	Wedderburn components
	Characters and primitive central idempotents
	Central simple algebras and Brauer equivalence
	Crossed Products
	Cyclic Crossed Products
	Abelian Crossed Products
	Classical crossed products
	Cyclic Algebras
	Cyclotomic algebras
	Numerical description of cyclotomic algebras
	Idempotents given by subgroups
	Shoda pairs of a group
	Strong Shoda pairs of a group
	Extremely strong Shoda pairs of a group
	Strongly monomial characters and strongly monomial groups
	Normally monomial characters and normally monomial groups
	Cyclotomic Classes and Strong Shoda Pairs
	Theory for Local Schur Index and Division Algebra Part Calculations
	 Obtaining Algebras with structure constants as terms of the Wedderburn decomposition
	A complete set of orthogonal primitive idempotents
	Applications to coding theory

	References
	Index

