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Abstract
The GAP4 deposited package QPA extends the GAP functionality for computations with finite dimensional
quotients of path algebras. QPA has data structures for quivers, quotients of path algebras, representations
of quivers with relations and complexes of modules. Basic operations on representations of quivers are
implemented as well as contructing minimal projective resolutions of modules (using using linear algebra).
A not necessarily minimal projective resolution constructed by using Groebner basis theory and a paper by
Green-Solberg-Zacharia, "Minimal projective resolutions", has been implemented. A goal is to have a test
for finite representation type. This work has started, but there is a long way left. Part of this work is to
implement/port the functionality and data structures that was available in CREP.
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Chapter 1

Introduction

1.1 General aims

The overall aim of QPA is to provide computational tools in basic research in mathematics (algebra).
It seeks to furnish users within and outside the area of representation theory of finite dimensional
algebras with a computational software package that will help in exploring a problem and testing
conjectures. As with all software development, new ideas and question will arise. The ability to
study and compute examples will help in proving or disproving well-established questions/conjectures.
Furthermore, it will enable us to consider new examples which were not accessible by hand or other
means before. In this way, we hope that QPA will aid in the development, not only of the area
of representation theory of finite dimensional algebras, but also of a broad variety of other areas of
mathematics, where such structures occur. In addition we aspire to create a research environment for
international cooperation on computational representation theory of finite dimensional algebras.

1.2 Installation and system requirements

Since the release of GAP version 4.7.8, the package QPA is distributed with GAP, so if you
download this version or any later version of GAP, the package QPA will be installed at the
same time as GAP is installed. Follow the instructions for installing GAP on the web page
http://www.gap-system.org/Download/index.html After having successfully started GAP,
give the command

Example
gap> LoadPackage("qpa");

which loads QPA and you can start using QPA.
One can also clone the QPA git repository from

• https://github.com/gap-packages/qpa

to follow the QPA development. Follow the instructions on

• https://folk.ntnu.no/oyvinso/QPA/

to install QPA by cloning the the git repository.
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Chapter 2

Quickstart

This chapter is intended for those who would like to get started with QPA right away by playing with
a few examples. We assume that the user is familiar with GAP syntax, for instance the different ways
to display various GAP objects: View, Print and Display. These features are all implemented for
the objects defined in QPA, and by using Display on an object, you will get a complete description
of it.

The following examples show how to create the most fundamental algebraic structures featured in
QPA, namely quivers, path algebras and quotients of path algebras, modules and module homomor-
phisms. Sometimes, there is more than one way of constructing such objects. See their respective
chapter in the documentation for more on this. The code from the examples can be found in the
examples/ directory of the distribution of QPA.

2.1 Example 1 – quivers, path algebras and quotients of path algebras

We construct a quiver Q, i.e. a finite directed graph, with one vertex and two loops:
Example

gap> Q := Quiver( 1, [ [1,1,"a"], [1,1,"b"] ] );
<quiver with 1 vertices and 2 arrows>
gap> Display(Q);
Quiver( ["v1"], [["v1","v1","a"],["v1","v1","b"]] )

When displaying Q, we observe that the vertex has been named v1, and that this name is used when
describing the arrows. (The "Display" style of viewing a quiver can also be used in construction, i.e.,
we could have written Q := Quiver( ["v1"], [["v1","v1","a"],["v1","v1","b"]] ) to get
the same object.)

If we want to know the number and names of the vertices and arrows, without getting the structure
of Q, we can request this information as shown below. We can also access the vertices and arrows
directly.

Example
gap> VerticesOfQuiver(Q);
[ v1 ]
gap> ArrowsOfQuiver(Q);
[ a, b ]
gap> Q.a;
a

8
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The next step is to create the path algebra kQ from Q, where k is the rational numbers (in general, one
can chose any field implemented in GAP).

Example
gap> kQ := PathAlgebra(Rationals, Q);
<Rationals[<quiver with 1 vertices and 2 arrows>]>
gap> Display(kQ);
<Path algebra of the quiver <quiver with 1 vertices and 2 arrows>
over the field Rationals>

We know that this algebra has three generators, with the vertex v_1 as the identity. This can be
verified by QPA. For convenience, we introduce new variables v1, a and b to get easier access to the
generators.

Example
gap> AssignGeneratorVariables(kQ);
#I Assigned the global variables [ v1, a, b ]
gap> v1; a; b;
(1)*v1
(1)*a
(1)*b
gap> id := One(kQ);
(1)*v1
gap> v1 = id;
true

Now, we want to construct a finite dimensional algebra, by dividing out some ideal. The generators
of the ideal (the relations) are given in terms of paths, and it is important to know the convention of
writing paths used in QPA. If we first go the arrow a and then the arrow b, the path is written as a∗b.

Say that we want our ideal to be generated by the relations \{a^2, a*b - b*a, b^2\}. Then
we make a list relations consisting of these relations and to construct the quotient we say: A :=
kQ/relations; on the command line in GAP.

Example
gap> relations := [a^2,a*b-b*a, b*b];
[ (1)*a^2, (1)*a*b+(-1)*b*a, (1)*b^2 ]
gap> A := kQ/relations;
<Rationals[<quiver with 1 vertices and 2 arrows>]/<two-sided ideal in
<Rationals[<quiver with 1 vertices and 2 arrows>]>, (3 generators)>>

See 4.6 for further remarks on constructing quotients of path algebras.

2.2 Example 2 – Introducing modules

In representation theory, there are several conventions for expressing modules of path algebras, and
again it is useful to comment on the convention used in QPA. A module (or representation) of an
algebra A = kQ/I is, briefly explained, a picture of Q where the vertices are finite dimensional k-
vectorspaces, and the arrows are linear transformations between the vector spaces respecting the rela-
tions of I. The modules are right modules, and a linear transformation from kn to km is represented by
a n×m-matrix.

There are several ways of constructing modules in QPA. First, we will explore some modules
which QPA gives us for free, namely the indecomposable projectives. We start by constructing a new
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algebra. The underlying quiver has three vertices and three arrows and looks like an A3 quiver with
both arrows pointing to the right, and one additional loop in the final vertex. The only relation is to go
this loop twice.

Example
gap> Q := Quiver( 3, [ [1,2,"a"], [2,3,"b"], [3,3,"c"] ]);
<quiver with 3 vertices and 3 arrows>
gap> kQ := PathAlgebra(Rationals, Q);
<Rationals[<quiver with 3 vertices and 3 arrows>]>
gap> relations := [kQ.c*kQ.c];
[ (1)*c^2 ]
gap> A := kQ/relations;
<Rationals[<quiver with 3 vertices and 3 arrows>]/
<two-sided ideal in <Rationals[<quiver with 3 vertices and 3 arrows>]>,

(1 generators)>>

The indecomposable projectives are easily created with one command. We use Display to explore
the modules.

Example
gap> projectives := IndecProjectiveModules(A);
[ <[ 1, 1, 2 ]>, <[ 0, 1, 2 ]>, <[ 0, 0, 2 ]> ]
gap> proj1 := projectives[1];
<[ 1, 1, 2 ]>
gap> Display(proj1);
<Module over <Rationals[<quiver with 3 vertices and 3 arrows>]/
<two-sided ideal in <Rationals[<quiver with 3 vertices and 3 arrows>]>,

(1 generators)>> with dimension vector
[ 1, 1, 2 ]> and linear maps given by
for arrow a:
[ [ 1 ] ]
for arrow b:
[ [ 1, 0 ] ]
for arrow c:
[ [ 0, 1 ],

[ 0, 0 ] ]

If we, for some reason, want to use the maps of this module, we can get the matrices directly by using
the command MatricesOfPathAlgebraModule(proj1):

Example
gap> M := MatricesOfPathAlgebraModule(proj1);
[ [ [ 1 ] ], [ [ 1, 0 ] ], [ [ 0, 1 ], [ 0, 0 ] ] ]
gap> M[1];
[ [ 1 ] ]

Naturally, the indecomposable injective modules are just as easily constructed, and so are the simple
modules.

Example
gap> injectives := IndecInjectiveModules(A);
[ <[ 1, 0, 0 ]>, <[ 1, 1, 0 ]>, <[ 2, 2, 2 ]> ]
gap> simples := SimpleModules(A);
[ <[ 1, 0, 0 ]>, <[ 0, 1, 0 ]>, <[ 0, 0, 1 ]> ]
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We know for a fact that the simple module in vertex 1 and the indecomposable injective module in
vertex 1 coincide. Let us look at this relationship in QPA:

Example
gap> s1 := simples[1];
<[ 1, 0, 0 ]>
gap> inj1 := injectives[1];
<[ 1, 0, 0 ]>
gap> IsIdenticalObj(s1,inj1);
false
gap> s1 = inj1;
true
gap> IsomorphicModules(s1,inj1);
true

We observe that QPA recognizes the modules as "the same" (that is, isomorphic); however, they are
not the same instance and hence the simplest test for equality fails. This is important to bear in mind
– objects which are isomorphic and regarded as the same in the "real world", are not necessarily the
same in GAP.

2.3 Example 3 – Constructing modules and module homomorphisms

Assume we want to construct the following A-module M, where A is the same algebra as in the

previous example 0 0 // Q 1 // Q 0ff . This module is neither indecomposable projective or
injective, nor simple, so we need to do the dirty work ourselves. Usually, the easiest way to construct
a module is to state the dimension vector and the non-zero maps. Here, there is only one non-zero
map, and we write

Example
gap> M := RightModuleOverPathAlgebra( A, [0,1,1], [ ["b", [[1]] ] ] );
<[ 0, 1, 1 ]>

To make sure we got everything right, we can use Display(M) to view the maps. The most
tricky thing is usually to get the correct numbers of brackets. Here is a slightly bigger example:

Q
(0 0) // Q2

(
1 0
−1 0

)
// Q2

(
0 0
1 0

)
ii .

Example
gap> N := RightModuleOverPathAlgebra( A, [1,2,2], [ ["a",[[1,1]] ],

["b", [[1,0], [-1,0]] ], ["c", [[0,0],[1,0]] ] ] );
<[ 1, 2, 2 ]>

Now we want to construct a map between the two modules, say f : M→ N, which is non-zero only in
vertex 2. This is done by

Example
gap> f := RightModuleHomOverAlgebra(M,N, [ [[0]], [[1,1]], NullMat(1,2,Rationals)]);
<<[ 0, 1, 1 ]> ---> <[ 1, 2, 2 ]>>
gap> Display(f);
<<Module over <Rationals[<quiver with 3 vertices and 3 arrows>]/
<two-sided ideal in <Rationals[<quiver with 3 vertices and 3 arrows>]>,

(1 generators)>> with dimension vector
[ 0, 1, 1 ]> ---> <Module over <Rationals[<quiver with 3 vertices and 3 arrows>]/
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<two-sided ideal in <Rationals[<quiver with 3 vertices and 3 arrows>]>,
(1 generators)>> with dimension vector [ 1, 2, 2 ]>>

with linear map for vertex number 1:
[ [ 0 ] ]
linear map for vertex number 2:
[ [ 1, 1 ] ]
linear map for vertex number 3:
[ [ 0, 0 ] ]

Note the two different ways of writing zero maps. Again, we can retrieve the matrices describing f :
Example

gap> MatricesOfPathAlgebraMatModuleHomomorphism(f);
[ [ [ 0 ] ], [ [ 1, 1 ] ], [ [ 0, 0 ] ] ]



Chapter 3

Quivers

3.1 Information class, Quivers

A quiver Q is a set derived from a labeled directed multigraph with loops Γ. An element of Q is called a
*path*, and falls into one of three classes. The first class is the set of *vertices* of Γ. The second class
is the set of *walks* in Γ of length at least one, each of which is represented by the corresponding
sequence of *arrows* in Γ. The third class is the singleton set containing the distinguished *zero
path*, usually denoted 0. An associative multiplication is defined on Q.

This chapter describes the functions in QPA that deal with paths and quivers. The functions for
constructing paths in Section 4.2 are normally not useful in isolation; typically, they are invoked by
the functions for constructing quivers in Section 3.2.

3.1.1 InfoQuiver

. InfoQuiver (info class)

is the info class for functions dealing with quivers.

3.2 Constructing Quivers

3.2.1 Quiver (no. of vertices, list of arrows)

. Quiver(N, arrows) (function)

. Quiver(vertices, arrows) (function)

. Quiver(adjacencymatrix) (function)

Arguments: First construction: N – number of vertices, arrows – a list of arrows to specify the
graph Γ. Second construction: vertices – a list of vertex names, arrows – a list of arrows. Third
construction: takes an adjacency matrix for the graph Γ.

Returns: a quiver, which is an object from the category IsQuiver (3.3.1).
In the first and third constructions, the vertices are named ‘v1, v2, ...’. In the second construction,

unique vertex names are given as strings in the list that is the first parameter. Each arrow is a list
consisting of a source vertex and a target vertex, followed optionally by an arrow name as a string.

Vertices and arrows are referenced as record components using the dot (‘.’) operator.

13
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Example
gap> q1 := Quiver(["u","v"],[["u","u","a"],["u","v","b"],
> ["v","u","c"],["v","v","d"]]);
<quiver with 2 vertices and 4 arrows>
gap> VerticesOfQuiver(q1);
[ u, v ]
gap> ArrowsOfQuiver(q1);
[ a, b, c, d ]
gap> q2 := Quiver(2,[[1,1],[2,1],[1,2]]);
<quiver with 2 vertices and 3 arrows>
gap> ArrowsOfQuiver(q2);
[ a1, a2, a3 ]
gap> VerticesOfQuiver(q2);
[ v1, v2 ]
gap> q3 := Quiver(2,[[1,1,"a"],[2,1,"b"],[1,2,"c"]]);
<quiver with 2 vertices and 3 arrows>
gap> ArrowsOfQuiver(q3);
[ a, b, c ]
gap> q4 := Quiver([[1,1],[2,1]]);
<quiver with 2 vertices and 5 arrows>
gap> VerticesOfQuiver(q4);
[ v1, v2 ]
gap> ArrowsOfQuiver(q4);
[ a1, a2, a3, a4, a5 ]
gap> SourceOfPath(q4.a2);
v1
gap> TargetOfPath(q4.a2);
v2

3.2.2 DynkinQuiver (DynkinQuiver)

. DynkinQuiver(Delta, n, orientation) (operation)

Arguments: Delta , n , orientation – a character (A,D,E), a positive integer, and a list giving
the orientation.

Returns: a Dynkin quiver of type Delta ("A", "D", or "E") with index n and orientation of the
arrows given by the list orientation .

If Delta is equal to "A" with index n , then the list orientation is of the form ["r", "l",
"l", ...,"r", "l"] of length n-1 , where "l" or "r" in coordinate i means that the arrow ai is
oriented to the left or to the right, respectively. The vertices and the arrows are named as in the

following diagram 1
a1 2

a2 an−2 n−1
an−1 n

If Delta is equal to "D" with index n and n greater or equal to 4, then the list orientation is of the
form ["r", "l", "l", ...,"r", "l"] of length n-1 , where "l" or "r" in coordinate i means that
the arrow ai is oriented to the left or to the right, respectively. The vertices and the arrows are named
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as in the following diagram 1
a1

3
a3 an−2 n−1

an−1 n

2
a2

If Delta is equal to "E" with index n and n in [6,7,8], then the list orientation is of the
form ["r", "l", "l", ...,"r", "l","d"] of length n-1 , where "l" or "r" in the n - 2
first coordinates and at coordinate i means that the arrow ai is oriented to the left or to the
right, respectively, and the last orientation parameter is "d" or "u" indicating if the arrow an−1
is oriented down or up. The vertices and the arrows are named as in the following diagram

n

an−1

1
a1 2

a2 3
a3 n−2

an−2 n−1

3.2.3 OrderedBy

. OrderedBy(quiver, ordering) (function)

Returns: a copy of quiver whose elements are ordered by ordering . The default ordering of a
quiver is length left lexicographic. See Section 3.4 for more information.

3.3 Categories and Properties of Quivers

3.3.1 IsQuiver

. IsQuiver(object) (category)

Returns: true when object is a quiver.

3.3.2 IsAcyclicQuiver

. IsAcyclicQuiver(quiver) (property)

Returns: true when quiver is a quiver with no oriented cycles.

3.3.3 IsUAcyclicQuiver

. IsUAcyclicQuiver(quiver) (property)

Returns: true when quiver is a quiver with no unoriented cycles. Note: an oriented cycle is also
an unoriented cycle!

3.3.4 IsConnectedQuiver

. IsConnectedQuiver(quiver) (property)

Returns: true when quiver is a connected quiver (i.e. each pair of vertices is connected by an
unoriented path in quiver ).
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3.3.5 IsTreeQuiver

. IsTreeQuiver(quiver) (property)

Returns: true when quiver is a tree as a graph (i.e. it is connected and contains no unoriented
cycles).

Example
gap> q1 := Quiver(2,[[1,2]]);
<quiver with 2 vertices and 1 arrows>
gap> IsQuiver("v1");
false
gap> IsQuiver(q1);
true
gap> IsAcyclicQuiver(q1); IsUAcyclicQuiver(q1);
true
true
gap> IsConnectedQuiver(q1); IsTreeQuiver(q1);
true
true
gap> q2 := Quiver(["u","v"],[["u","v"],["v","u"]]);
<quiver with 2 vertices and 2 arrows>
gap> IsAcyclicQuiver(q2); IsUAcyclicQuiver(q2);
false
false
gap> IsConnectedQuiver(q2); IsTreeQuiver(q2);
true
false
gap> q3 := Quiver(["u","v"],[["u","v"],["u","v"]]);
<quiver with 2 vertices and 2 arrows>
gap> IsAcyclicQuiver(q3); IsUAcyclicQuiver(q3);
true
false
gap> IsConnectedQuiver(q3); IsTreeQuiver(q3);
true
false
gap> q4 := Quiver(2, []);
<quiver with 2 vertices and 0 arrows>
gap> IsAcyclicQuiver(q4); IsUAcyclicQuiver(q4);
true
true
gap> IsConnectedQuiver(q4); IsTreeQuiver(q4);
false
false

3.3.6 IsDynkinQuiver

. IsDynkinQuiver(quiver) (property)

Returns: true when quiver is a Dynkin quiver (more precisely, when underlying undirected
graph of quiver is a Dynkin diagram).

This function prints an additional information. If it returns true, it prints the Dynkin type of
quiver , i.e. A_n, D_m, E_6, E_7 or E_8. Moreover, in case quiver is not connected or contains an
unoriented cycle, the function also prints a respective info.
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Example
gap> q1 := Quiver(4,[[1,4],[4,2],[3,4]]);
<quiver with 4 vertices and 3 arrows>
gap> IsDynkinQuiver(q1);
D_4
true
gap> q2 := Quiver(2,[[1,2],[1,2]]);
<quiver with 2 vertices and 2 arrows>
gap> IsDynkinQuiver(q2);
Quiver contains an (un)oriented cycle.
false
gap> q3 := Quiver(5,[[1,5],[2,5],[3,5],[4,5]]);
<quiver with 5 vertices and 4 arrows>

3.4 Orderings of paths in a quiver

The only supported ordering on the paths in a quiver is length left lexicographic ordering. The reason
for this is that QPA does not have its own functions for computing Groebner basis. Instead they
are computed using the GAP-package GBNP. The interface with this package, which is provided
by the QPA, only supports the length left lexicographic ordering, even though GBNP supports more
orderings.

For constructing a quiver, there are three different methods. TODO: Explain how the vertices and
arrows are ordered.

3.5 Attributes and Operations for Quivers

3.5.1 . (for quiver)

. .(Q, element) (operation)

Arguments: Q – a quiver, and element – a vertex or an arrow.
The operation . allows access to generators of the quiver. If you have named your vertices and

arrows then the access looks like ‘Q .name of element ’. If you have not named the elements of the
quiver, then the default names are v1, v2, ... and a1, a2, ... in the order they are created.

3.5.2 VerticesOfQuiver

. VerticesOfQuiver(quiver) (attribute)

Returns: a list of paths that are vertices in quiver .

3.5.3 ArrowsOfQuiver

. ArrowsOfQuiver(quiver) (attribute)

Returns: a list of paths that are arrows in quiver .
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3.5.4 AdjacencyMatrixOfQuiver

. AdjacencyMatrixOfQuiver(quiver) (attribute)

Returns: the adjacency matrix of quiver .

3.5.5 GeneratorsOfQuiver

. GeneratorsOfQuiver(quiver) (attribute)

Returns: a list of the vertices and the arrows in quiver .

3.5.6 NumberOfVertices

. NumberOfVertices(quiver) (attribute)

Returns: the number of vertices in quiver .

3.5.7 NumberOfArrows

. NumberOfArrows(quiver) (attribute)

Returns: the number of arrows in quiver .

3.5.8 OrderingOfQuiver

. OrderingOfQuiver(quiver) (attribute)

Returns: the ordering used to order elements in quiver . See Section 3.4 for more information.

3.5.9 OppositeQuiver

. OppositeQuiver(quiver) (attribute)

Returns: the opposite quiver of quiver , where the vertices are labelled "name in original quiver"
+ "_op" and the arrows are labelled "name in orginal quiver" + "_op".

This attribute contains the opposite quiver of a quiver, that is, a quiver which is the same except
that every arrow goes in the opposite direction.

The operation OppositePath (4.15.1) takes a path in a quiver to the corresponding path in the
opposite quiver.

The opposite of the opposite of a quiver Q is isomorphic to Q. In QPA, we regard these two quivers
to be the same, so the call OppositeQuiver(OppositeQuiver(Q)) returns the object Q.

Example
gap> q1 := Quiver(["u","v"],[["u","u","a"],["u","v","b"],
> ["v","u","c"],["v","v","d"]]);
<quiver with 2 vertices and 4 arrows>
gap> q1.a;
a
gap> q1.v;
v
gap> VerticesOfQuiver(q1);
[ u, v ]
gap> ArrowsOfQuiver(q1);
[ a, b, c, d ]
gap> AdjacencyMatrixOfQuiver(q1);
[ [ 1, 1 ], [ 1, 1 ] ]
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gap> GeneratorsOfQuiver(q1);
[ u, v, a, b, c, d ]
gap> NumberOfVertices(q1);
2
gap> NumberOfArrows(q1);
4
gap> OrderingOfQuiver(q1);
<length left lexicographic ordering>
gap> q1_op := OppositeQuiver(q1);
<quiver with 2 vertices and 4 arrows>
gap> VerticesOfQuiver(q1_op);
[ u_op, v_op ]
gap> ArrowsOfQuiver(q1_op);
[ a_op, b_op, c_op, d_op ]

3.5.10 FullSubquiver

. FullSubquiver(quiver, list) (operation)

Returns: This function returns a quiver which is a full subquiver of a quiver induced by the
list of its vertices.

The names of vertices and arrows in resulting (sub)quiver remain the same as in original one. The
function checks if list consists of vertices of quiver .

3.5.11 ConnectedComponentsOfQuiver

. ConnectedComponentsOfQuiver(quiver) (operation)

Returns: This function returns a list of quivers which are all connected components of a quiver .
The names of vertices and arrows in resulting (sub)quiver remain the same as in original one. The

function sets the property IsConnectedQuiver (3.3.4) to true for all the components.
Example

gap> Q := Quiver(6, [ [1,2],[1,1],[3,2],[4,5],[4,5] ]);
<quiver with 6 vertices and 5 arrows>
gap> VerticesOfQuiver(Q);
[ v1, v2, v3, v4, v5, v6 ]
gap> FullSubquiver(Q, [Q.v1, Q.v2]);
<quiver with 2 vertices and 2 arrows>
gap> ConnectedComponentsOfQuiver(Q);
[ <quiver with 3 vertices and 3 arrows>,

<quiver with 2 vertices and 2 arrows>,
<quiver with 1 vertices and 0 arrows> ]

3.5.12 SeparatedQuiver

. SeparatedQuiver(quiver) (attribute)

Arguments: quiver – a quiver.
Returns: the separated quiver of quiver .
The vertices in the separated quiver are labelled v and v′ for each vertex v in quiver , and for each

arrow a : v→ w in quiver the arrow v→ w′ is labelled a.
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3.6 Categories and Properties of Paths

3.6.1 IsPath

. IsPath(object) (category)

All path objects are in this category.

3.6.2 IsQuiverVertex

. IsQuiverVertex(object) (category)

All vertices are in this category.

3.6.3 IsArrow

. IsArrow(object) (category)

All arrows are in this category.

3.6.4 IsZeroPath

. IsZeroPath(object) (property)

is true when object is the zero path.
Example

gap> q1 := Quiver(["u","v"],[["u","u","a"],["u","v","b"],
> ["v","u","c"],["v","v","d"]]);
<quiver with 2 vertices and 4 arrows>
gap> IsPath(q1.b);
true
gap> IsPath(q1.u);
true
gap> IsQuiverVertex(q1.c);
false
gap> IsZeroPath(q1.d);
false

3.7 Attributes and Operations of Paths

3.7.1 SourceOfPath

. SourceOfPath(path) (attribute)

Returns: the source (first) vertex of path .

3.7.2 TargetOfPath

. TargetOfPath(path) (attribute)

Returns: the target (last) vertex of path .
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3.7.3 LengthOfPath

. LengthOfPath(path) (attribute)

Returns: the length of path .

3.7.4 WalkOfPath

. WalkOfPath(path) (attribute)

Returns: a list of the arrows that constitute path in order.

3.7.5 *

. *(p, q) (operation)

Arguments: p and q – two paths in the same quiver.
Returns: the multiplication of the paths. If the paths are not in the same quiver an error is

returned. If the target of p differs from the source of q , then the result is the zero path. Otherwise, if
either path is a vertex, then the result is the other path. Finally, if both are paths of length at least 1,
then the result is the concatenation of the walks of the two paths.

Example
gap> q1 := Quiver(["u","v"],[["u","u","a"],["u","v","b"],
> ["v","u","c"],["v","v","d"]]);
<quiver with 2 vertices and 4 arrows>
gap> SourceOfPath(q1.v);
v
gap> p1:=q1.a*q1.b*q1.d*q1.d;
a*b*d^2
gap> TargetOfPath(p1);
v
gap> p2:=q1.b*q1.b;
0
gap> WalkOfPath(p1);
[ a, b, d, d ]
gap> WalkOfPath(q1.a);
[ a ]
gap> LengthOfPath(p1);
4
gap> LengthOfPath(q1.v);
0

3.7.6 =

. =(p, q) (operation)

Arguments: p and q – two paths in the same quiver.
Returns: true if the two paths are equal. Two paths are equal if they have the same source and

the same target and if they have the same walks.
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3.7.7 < (for two paths in a quiver)

. <(p, q) (operation)

Arguments: p and q – two paths in the same quiver.
Returns: a comparison of the two paths with respect to the ordering of the quiver.

3.8 Attributes of Vertices

3.8.1 IncomingArrowsOfVertex

. IncomingArrowsOfVertex(vertex) (attribute)

Returns: a list of arrows having vertex as target. Only meaningful if vertex is in a quiver.

3.8.2 OutgoingArrowsOfVertex

. OutgoingArrowsOfVertex(vertex) (attribute)

Returns: a list of arrows having vertex as source.

3.8.3 InDegreeOfVertex

. InDegreeOfVertex(vertex) (attribute)

Returns: the number of arrows having vertex as target. Only meaningful if vertex is in a
quiver.

3.8.4 OutDegreeOfVertex

. OutDegreeOfVertex(vertex) (attribute)

Returns: the number of arrows having vertex as source.

3.8.5 NeighborsOfVertex

. NeighborsOfVertex(vertex) (attribute)

Returns: a list of neighbors of vertex , that is, vertices that are targets of arrows having vertex
as source.

Example
gap> q1 := Quiver(["u","v"],[["u","u","a"],["u","v","b"],
> ["v","u","c"],["v","v","d"]]);
<quiver with 2 vertices and 4 arrows>
gap> OutgoingArrowsOfVertex(q1.u);
[ a, b ]
gap> InDegreeOfVertex(q1.u);
2
gap> NeighborsOfVertex(q1.v);
[ u, v ]

3.9 Posets

This implementation of posets was done by the HomAlg-project.
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3.9.1 Poset (for a list P and a set of relations rel)

. Poset(P, rel) (operation)

Arguments: P a list and rel – a list of pairs from P .
Returns: the poset defined on the points P and the relations generated by rel .
The elements in P is given as a list, and for example ["a", "b", "c", "d"] and the relations are

given as a list of lists, for instance in the above case: [ ["a", "b", "c"], ["b", "d"], ["c",
"d"]]. The first list means that a < b and a < c, and the second one means b < d and finally the last
one means c < d.

3.9.2 Size

. Size(P) (attribute)

Returns: the number of elements of the poset P .

3.9.3 UnderlyingSet

. UnderlyingSet(P) (operation)

Arguments: P – poset.
Returns: the underlying set of the poset P .

3.9.4 PartialOrderOfPoset

. PartialOrderOfPoset(P) (operation)

Arguments: P – poset.
Returns: the partial order of the poset P as a function.



Chapter 4

Path Algebras

4.1 Introduction

A path algebra is an algebra constructed from a field F (see Chapter 56 and 57 in the GAP manual for
information about fields) and a quiver Q. The path algebra FQ contains all finite linear combinations
of paths of Q. This chapter describes the functions in QPA that deal with path algebras and quotients
of path algebras. Path algebras are algebras, so see Chapter 60: Algebras in the GAP manual for
functionality such as generators, basis functions, and mappings.

The only supported ordering of elements in a path algebra is length left lexicographic ordering.
See 3.4 for more information.

4.2 Constructing Path Algebras

4.2.1 PathAlgebra

. PathAlgebra(F, Q) (function)

Arguments: F – a field, Q – a quiver.
Returns: the path algebra FQ of Q over the field F .
For construction of fields, see the GAP documentation. The elements of the path algebra FQ will

be ordered by left length-lexicographic ordering.
Example

gap> Q := Quiver( ["u","v"] , [ ["u","u","a"], ["u","v","b"],
> ["v","u","c"], ["v","v","d"] ] );
<quiver with 2 vertices and 4 arrows>
gap> F := Rationals;
Rationals
gap> FQ := PathAlgebra(F,Q);
<Rationals[<quiver with 2 vertices and 4 arrows>]>

24
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4.3 Categories and Properties of Path Algebras

4.3.1 IsPathAlgebra

. IsPathAlgebra(object) (property)

Arguments: object – any object in GAP.
Returns: true whenever object is a path algebra.

Example
gap> IsPathAlgebra(FQ);
true

4.4 Attributes and Operations for Path Algebras

4.4.1 AssociatedMonomialAlgebra

. AssociatedMonomialAlgebra(A) (attribute)

Arguments: A – a quiver algebra.
Returns: the associated monomial algebra of A with respect to the Groebner basis the path

algebra is endoved with.

4.4.2 QuiverOfPathAlgebra

. QuiverOfPathAlgebra(FQ) (attribute)

Arguments: FQ – a path algebra.
Returns: the quiver from which FQ was constructed.

Example
gap> QuiverOfPathAlgebra(FQ);
<quiver with 2 vertices and 4 arrows>

4.4.3 OrderingOfAlgebra

. OrderingOfAlgebra(FQ) (attribute)

Arguments: FQ – a path algebra.
Returns: the ordering of the quiver of the path algebra.
Note: As of the current version of QPA, only left length lexicographic ordering is supported.

4.4.4 . (for a path algebra)

. .(FQ, generator) (operation)

Arguments: FQ – a path algebra, generator – a vertex or an arrow in the quiver Q .
Returns: the generator as an element of the path algebra.
Other elements of the path algebra can be constructed as linear combinations of the generators.

For further operations on elements, see below.
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Example
gap> FQ.a;
(1)*a
gap> FQ.v;
(1)*v
gap> elem := 2*FQ.a - 3*FQ.v;
(-3)*v+(2)*a

4.5 Operations on Path Algebra Elements

4.5.1 ElementOfPathAlgebra

. ElementOfPathAlgebra(PA, path) (operation)

Arguments: PA – a path algebra, path – a path in the quiver from which PA was constructed.
Returns: The embedding of path into the path algebra PA , or it returns false if path is not an

element of the quiver from which PA was constructed.

4.5.2 < (for two elements in a path algebra)

. <(a, b) (operation)

Arguments: a and b – two elements of the same path algebra.
Returns: True whenever a is smaller than b , according to the ordering of the path algebra.

4.5.3 IsLeftUniform

. IsLeftUniform(element) (operation)

Arguments: element – an element of the path algebra.
Returns: true if each monomial in element has the same source vertex, false otherwise.

4.5.4 IsRightUniform

. IsRightUniform(element) (operation)

Arguments: element – an element of the path algebra.
Returns: true if each monomial in element has the same target vertex, false otherwise.

4.5.5 IsUniform

. IsUniform(element) (operation)

Arguments: element – an element of the path algebra.
Returns: true whenever element is both left and right uniform.

Example
gap> IsLeftUniform(elem);
false



QPA 27

gap> IsRightUniform(elem);
false
gap> IsUniform(elem);
false
gap> another := FQ.a*FQ.b + FQ.b*FQ.d*FQ.c*FQ.b*FQ.d;
(1)*a*b+(1)*b*d*c*b*d
gap> IsLeftUniform(another);
true
gap> IsRightUniform(another);
true
gap> IsUniform(another);
true

4.5.6 LeadingTerm

. LeadingTerm(element) (operation)

. Tip(element) (operation)

Arguments: element – an element of the path algebra.
Returns: the term in element whose monomial is largest among those monomials that have

nonzero coefficients (known as the "tip" of element ).
Note: The two operations are equivalent.

4.5.7 LeadingCoefficient

. LeadingCoefficient(element) (operation)

. TipCoefficient(element) (operation)

Arguments: element – an element of the path algebra.
Returns: the coefficient of the tip of element (which is an element of the field).
Note: The two operations are equivalent.

4.5.8 LeadingMonomial

. LeadingMonomial(element) (operation)

. TipMonomial(element) (operation)

Arguments: element – an element of the path algebra.
Returns: the monomial of the tip of element (which is an element of the underlying quiver, not

of the path algebra).
Note: The two operations are equivalent.

Example
gap> elem := FQ.a*FQ.b*FQ.c + FQ.b*FQ.d*FQ.c+FQ.d*FQ.d;
(1)*d^2+(1)*a*b*c+(1)*b*d*c
gap> LeadingTerm(elem);
(1)*b*d*c
gap> LeadingCoefficient(elem);
1
gap> mon := LeadingMonomial(elem);
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b*d*c
gap> mon in FQ;
false
gap> mon in Q;
true

4.5.9 MakeUniformOnRight

. MakeUniformOnRight(elems) (operation)

Arguments: elems – a list of elements in a path algebra.
Returns: a list of right uniform elements generated by each element of elems .

4.5.10 MappedExpression

. MappedExpression(expr, gens1, gens2) (operation)

Arguments: expr – element of a path algebra, gens1 and gens2 – equal-length lists of generators
for subalgebras.

Returns: expr as an element of the subalgebra generated by gens2 .
The element expr must be in the subalgebra generated by gens1 . The lists define a mapping of

each generator in gens1 to the corresponding generator in gens2 . The value returned is the evaluation
of the mapping at expr .

4.5.11 VertexPosition

. VertexPosition(element) (operation)

Arguments: element – an element of the path algebra on the form k∗v, where v is a vertex of the
underlying quiver and k is an element of the field.

Returns: the position of the vertex v in the list of vertices of the quiver.

4.5.12 RelationsOfAlgebra

. RelationsOfAlgebra(A) (attribute)

Arguments: A – a quiver algebra.
Returns: a set of generators for the ideal in the path algebra kQ from which the algebra FQ was

constructed. If A is a path algebra, then an empty list is returned.

4.6 Constructing Quotients of Path Algebras

In the introduction we saw already one way of constructing a quotient of a path algebra. In addition to
this there are at least two other ways of constructing a quotient of a path algebra; one with factoring
out an ideal and one where a Groebner basis is attached to the quotient. We discuss these two next.

For several functions in QPA to function properly one needs to have a Groebner basis attached to
the quotient one wants to construct, or equivalently a Groebner basis for the ideal one is factoring out.
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For this to work the ideal must admit a finite Groebner basis. However, to our knowlegde there is no
algorithm for determining if an ideal has a finite Groebner basis. On the other hand, it is known that if
the factor algebra is finite dimensional, then the ideal has a finite Groebner basis (independent of the
ordering of the elements, see [Gre00] ). In addition to having a finite Groebner basis, several functions
also need that the factoring ideal is admissible. A quotient of a path algebra by an admissible ideal
belongs to the category IsAdmissibleQuotientOfPathAlgebra (4.11.1). The method used in the
introduction constructs a quotient in this category. However, there are situations where it is interesting
to analyze quotients of path algebras by a non-admissible ideal, so we provide also additional methods.

In the example below, we construct a factor of a path algebra purely with commands in GAP
(cf. also Chapter 60: Algebras in the GAP manual on how to construct an ideal and a quotient of
an algebra). Functions which use Groebner bases like IsFiniteDimensional (4.11.3), Dimension
(4.12.6), IsSpecialBiserialAlgebra (4.11.19) or a membership test \in (4.7.6) will work prop-
erly (they simply compute the Groebner basis if it is necessary). But some "older" functions (like
IndecProjectiveModules (6.5.4)) can fail or give an incorrect answer! This way of constructing a
quotient of a path algebra can be useful e.g. if we know that computing a Groebner basis will take a
long time and we do not need this because we want to deal only with modules.

Example
gap> Q := Quiver( 1, [ [1,1,"a"], [1,1,"b"] ] );
<quiver with 1 vertices and 2 arrows>
gap> kQ := PathAlgebra(Rationals, Q);
<Rationals[<quiver with 1 vertices and 2 arrows>]>
gap> gens := GeneratorsOfAlgebra(kQ);
[ (1)*v1, (1)*a, (1)*b ]
gap> a := gens[2];
(1)*a
gap> b := gens[3];
(1)*b
gap> relations := [a^2,a*b-b*a, b*b];
[ (1)*a^2, (1)*a*b+(-1)*b*a, (1)*b^2 ]
gap> I := Ideal(kQ,relations);
<two-sided ideal in <Rationals[<quiver with 1 vertices and 2 arrows>]>

, (3 generators)>
gap> A := kQ/I;
<Rationals[<quiver with 1 vertices and 2 arrows>]/
<two-sided ideal in <Rationals[<quiver with 1 vertices and 2 arrows>]>

, (3 generators)>>
gap> IndecProjectiveModules(A);
Compute a Groebner basis of the ideal you are factoring out with befor\
e you form the quotient algebra, or you have entered an algebra which \
is not finite dimensional.
fail

To resolve this matter, we need to compute the Gröbner basis of the ideal generated by the relations in
kQ (yes, it seems like we are going in circles here. Remember, then, that an ideal in the "mathematical
sense" may exist independently of the a corresponding Ideal object in GAP. Also, Gröbner bases in
QPA are handled by the GBNP package, with constructor methods not dependent on Ideal objects.
After creating the ideal I, we need to perform yet another Gröbner basis operation which just set a
respective attribute for I, see GroebnerBasis (5.1.2).

Example
gap> gb := GBNPGroebnerBasis(relations,kQ);
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[ (1)*a^2, (-1)*a*b+(1)*b*a, (1)*b^2 ]
gap> I := Ideal(kQ,gb);
<two-sided ideal in <Rationals[<quiver with 1 vertices and 2 arrows>]>,

(3 generators)>
gap> GroebnerBasis(I,gb);
<complete two-sided Groebner basis containing 3 elements>
gap> IndecProjectiveModules(A);
fail
gap> A := kQ/I;
<Rationals[<quiver with 1 vertices and 2 arrows>]/
<two-sided ideal in <Rationals[<quiver with 1 vertices and 2 arrows>]>,

(3 generators)>>
gap> IndecProjectiveModules(A);
[ <[ 4 ]> ]

Note that the instruction A := kQ/relations; used in Introduction is exactly an abbreviation for a
sequence of instructions with Groebner basis as in above example.

Most QPA operations working on algebras handle path algebras and quotients of path algebras in
the same way (when this makes sense). However, there are still a few operations which does not work
properly when given a quotient of a path algebra. When constructing a quotient of a path algebra one
needs define the ideal one is factoring out. Above this has been done with the commands

Example
gap> gens := GeneratorsOfAlgebra(kQ);
[ (1)*v1, (1)*a, (1)*b ]
gap> a := gens[2];
(1)*a
gap> b := gens[3];
(1)*b

The following command makes this process easier.

4.6.1 AssignGeneratorVariables

. AssignGeneratorVariables(A) (operation)

Arguments: A – a quiver algebra.
Returns: Takes a quiver algebra A as an argument and creates variables, say v1, ...,vn for the

vertices, and a1, ...,at for the arrows for the corresponding elements in A , whenever the quiver for
the quiver algebra A is was constructed with the vertices being named v1, ...,vn and the arrows being
named a1, ...,at .

Here is an example of its use.
Example

gap> AssignGeneratorVariables(kQ);
#I Assigned the global variables [ v1, a, b ]
gap> v1; a; b;
(1)*v1
(1)*a
(1)*b
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4.7 Ideals and operations on ideals

4.7.1 Ideal

. Ideal(FQ, elems) (function)

Arguments: FQ – a path algebra, elems – a list of elements in FQ .
Returns: the ideal of FQ generated by elems with the property IsIdealInPathAlgebra (4.8.2).
For more on ideals, see the GAP reference manual (Chapter 60.6).

Technical info: Ideal is a synonym for a global GAP function TwoSidedIdeal which calls an operation
TwoSidedIdealByGenerators (synonym IdealByGenerators) for an algebra (FLMLOR).

Example
gap> gb := GBNPGroebnerBasis(relations,kQ);
[ (1)*a^2, (-1)*a*b+(1)*b*a, (1)*b^2 ]
gap> I := Ideal(kQ,gb);
<two-sided ideal in <Rationals[<quiver with 1 vertices and 2 arrows>]>

, (3 generators)>
gap> GroebnerBasis(I,gb);
<complete two-sided Groebner basis containing 3 elements>
gap> IndecProjectiveModules(A);
[ <[ 4 ]> ]
gap> A := kQ/I;
<Rationals[<quiver with 1 vertices and 2 arrows>]/
<two-sided ideal in <Rationals[<quiver with 1 vertices and 2 arrows>]>

, (3 generators)>>
gap> IndecProjectiveModules(A);
[ <[ 4 ]> ]
true

4.7.2 IdealOfQuotient

. IdealOfQuotient(A) (attribute)

Arguments: A – a quiver algebra.
Returns: the ideal in the path algebra kQ from which A was constructed.

4.7.3 PathsOfLengthTwo

. PathsOfLengthTwo(Q) (operation)

Arguments: Q – a quiver.
Returns: a list of all paths of length two in Q , sorted by <. Fails with error message if Q is not a

Quiver object.

4.7.4 NthPowerOfArrowIdeal

. NthPowerOfArrowIdeal(FQ, n) (operation)

Arguments: FQ – a path algebra, n – a positive integer.
Returns: the ideal generated all the paths of length n in FQ .
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4.7.5 AddNthPowerToRelations

. AddNthPowerToRelations(FQ, rels, n) (operation)

Arguments: FQ – a path algebra, rels – a (possibly empty) list of elements in FQ , n – a positive
integer.

Returns: the list rels with the paths of length n of FQ appended (will change the list rels ).

4.7.6 \in (elt. in path alg. and ideal)

. \in(elt, I) (operation)

Arguments: elt - an element in a path algebra, I - an ideal in the same path algebra (i.e. with
IsIdealInPathAlgebra (4.8.2) property).

Returns: true, if elt belongs to I .
It performs the membership test for an ideal in path algebra using completely reduced Groebner

bases machinery.
Technical info: For the efficiency reasons, it computes Groebner basis for I only if it has not been
computed yet. Similarly, it performs CompletelyReduceGroebnerBasis only if it has not been reduced
yet. The method can change the existing Groebner basis.
Remark: It works only in case I is in the arrow ideal.

4.8 Categories and properties of ideals

4.8.1 IsAdmissibleIdeal

. IsAdmissibleIdeal(I) (property)

Arguments: I – an IsIdealInPathAlgebra object.
Returns: true whenever I is an admissible ideal in a path algebra, i.e. I is a subset of J2 and I

contains Jn for some n, where J is the arrow ideal.
Technical note: The second condition is checked by the nilpotency index of the radical and check-

ing if the ideal generated by the arrows to one plus this index is in the ideal of the relations (this uses
Groebner bases machinery).

4.8.2 IsIdealInPathAlgebra

. IsIdealInPathAlgebra(I) (property)

Arguments: I – an IsFLMLOR object.
Returns: true whenever I is an ideal in a path algebra.

4.8.3 IsMonomialIdeal

. IsMonomialIdeal(I) (property)
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Arguments: I – an IsIdealInPathAlgebra object.
Returns: true whenever I is a monomial ideal in a path algebra, i.e. I is generated by a set of

monomials (= "zero-relations").
Technical note: It uses the observation: I is a monomial ideal iff Groebner basis of I is a set of

monomials. It computes Groebner basis for I only in case it has not been computed yet and a usual
set of generators (GeneratorsOfIdeal) is not a set of monomials.

4.8.4 IsQuadraticIdeal

. IsQuadraticIdeal(rels) (operation)

Arguments: rels – a list of elements in a path algebra.
Returns: true whenever rels is a list of elements in the linear span of degree two elements of a

path algebra. It returns false whenever rels is a list of elements in a path algebra, but not in the linear
span of degree two of a path algebra. Otherwise it returns fail.

4.9 Operations on ideals

4.9.1 ProductOfIdeals

. ProductOfIdeals(I, J) (operation)

Arguments: I, J – two ideals in a path algebra KQ .
Returns: the ideal formed by the product of the ideals I and J , whenever the ideal J admits

finitely many nontips in KQ .
The function checks if the two ideals are ideals in the same path algebra and that J admits finitely

many nontips in KQ .

4.9.2 QuadraticPerpOfPathAlgebraIdeal

. QuadraticPerpOfPathAlgebraIdeal(rels) (operation)

Arguments: rels – a list of elements in a path algebra.
Returns: fail if rels is not a list of elements in the linear span of degree two elements of a path

algebra KQ . Otherwise it returns a list of length two, where the first element is a set of generators for
the ideal rels⊥ in opposite algebra of KQ and the second element is the opposite algebra of KQ .

4.10 Attributes of ideals

For many of the functions related to quotients, you will need to compute a Groebner basis of the ideal.
This is done with the GBNP package. The following example shows how to set a Groebner basis for
an ideal (note that this must be done before the quotient is constructed). See the next two chapters for
more on Groebner bases.

Example
gap> rels := [FQ.a - FQ.b*FQ.c, FQ.d*FQ.d];
[ (1)*a+(-1)*b*c, (1)*d^2 ]
gap> gb := GBNPGroebnerBasis(rels, FQ);
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[ (-1)*a+(1)*b*c, (1)*d^2 ]
gap> I := Ideal(FQ, gb);
<two-sided ideal in <Rationals[<quiver with 2 vertices and 4 arrows>]>

, (2 generators)>
gap> GroebnerBasis(I, gb);
<complete two-sided Groebner basis containing 2 elements>
gap> quot := FQ/I;
<Rationals[<quiver with 2 vertices and 4 arrows>]/
<two-sided ideal in <Rationals[<quiver with 2 vertices and 4 arrows>]>

, (2 generators)>>

4.10.1 GroebnerBasisOfIdeal

. GroebnerBasisOfIdeal(I) (attribute)

Arguments: I – an ideal in path algebra.
Returns: a Groebner basis of ideal I (if it has been already computed!).
This attribute is set only by an operation GroebnerBasis (5.1.2).

4.11 Categories and Properties of Quotients of Path Algebras

4.11.1 IsAdmissibleQuotientOfPathAlgebra

. IsAdmissibleQuotientOfPathAlgebra(A) (filter)

Arguments: A – any object.
Returns: true whenever A is a quotient of a path algebra by an admissible ideal constructed by

the command \/ with arguments a path algebra and a list of relations, KQ/rels, where rels is a list
of relations. Otherewise it returns an error message.

4.11.2 IsQuotientOfPathAlgebra

. IsQuotientOfPathAlgebra(object) (property)

Argument: object – any object in GAP.
Returns: true whenever object is a quotient of a path algebra.

Example
gap> quot := FQ/I;
<Rationals[<quiver with 2 vertices and 4 arrows>]/
<two-sided ideal in <Rationals[<quiver with 2 vertices and 4 arrows>]>

, (2 generators)>>
gap> IsQuotientOfPathAlgebra(quot);
true
gap> IsQuotientOfPathAlgebra(FQ);
false
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4.11.3 IsFiniteDimensional

. IsFiniteDimensional(A) (property)

Arguments: A – a path algebra or a quotient of a path algebra.
Returns: true whenever A is a finite dimensional algebra.
Technical note: For a path algebra it uses a standard GAP method. For a quotient of a path algebra

it uses Groebner bases machinery (it computes Groebner basis for the ideal only in case it has not been
computed yet).

4.11.4 IsCanonicalAlgebra

. IsCanonicalAlgebra(A) (property)

Arguments: A – a path algebra or a quotient of a path algebra.
Returns: true if A has been constructed by the operation CanonicalAlgebra (4.14.2), otherwise

"Error, no method found".

4.11.5 IsDistributiveAlgebra

. IsDistributiveAlgebra(A) (property)

Arguments: A – a path algebra or a quotient of a path algebra.
Returns: true if A is an admissible quotient of a path algebra and distributive. Otherwise it

returns false if A is an admissible quotient of a path algebra and distributive. If A is a quotient of a
path algebra, but not an admissible quotient, then it looks for other methods. There are not further
methods implemented in QPA as of now.

4.11.6 IsFiniteGlobalDimensionAlgebra

. IsFiniteGlobalDimensionAlgebra(A) (property)

Arguments: A - an algebra over a field.
Returns: true if it is known that the entered algebra A has finite global dimension.
There is no method associated to this, so if it is not known that the algebra has finite global

dimension, then an error message saying "no method found!" is return.

4.11.7 IsGentleAlgebra

. IsGentleAlgebra(A) (property)

Arguments: A – a path algebra or a quotient of a path algebra.
Returns: true if the algebra A is a gentle algebra. Otherwise false.

4.11.8 IsGorensteinAlgebra

. IsGorensteinAlgebra(A) (property)



QPA 36

Arguments: A – an algebra.
Returns: true if it is known that A is a Gorenstein algebra. If unknown it returns an error message

saying "no method found!".
There is no method installed for this yet.

4.11.9 IsHereditaryAlgebra

. IsHereditaryAlgebra(A) (property)

Arguments: A – an admissible quotient of a path algebra.
Returns: true if A is a hereditary algebra and false otherwise.

4.11.10 IsKroneckerAlgebra

. IsKroneckerAlgebra(A) (property)

Arguments: A – a path algebra or a quotient of a path algebra.
Returns: true if A has been constructed by the operation KroneckerAlgebra (4.14.3), otherwise

"Error, no method found".

4.11.11 IsMonomialAlgebra

. IsMonomialAlgebra(A) (property)

Arguments: A – a quiver algebra.
Returns: true when A is given as kQ/I and I is a monomial ideal in kQ, otherwise it returns false.

4.11.12 IsNakayamaAlgebra

. IsNakayamaAlgebra(A) (property)

Arguments: A – a path algebra or a quotient of a path algebra.
Returns: true if A has been constructed by the operation NakayamaAlgebra (4.14.4), otherwise

"Error, no method found".

4.11.13 IsQuiverAlgebra

. IsQuiverAlgebra(A) (filter)

Arguments: A – an algebra.
Returns: true if A is a path algebra or a quotient of a path algebra algebra, otherwise false.

4.11.14 IsRadicalSquareZeroAlgebra

. IsRadicalSquareZeroAlgebra(A) (property)

Arguments: A – an algebra.
Returns: true if A is a radical square zero algebra, otherwise false.
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4.11.15 IsSchurianAlgebra

. IsSchurianAlgebra(A) (property)

Arguments: A – a path algebra or a quotient of a path algebra.
Returns: true if A is a schurian algebra. By definition it means that: for all x,y ∈ Q0 we have

dimA(x,y)≤ 1.
Note: This method fail when a Groebner basis for ideal has not been computed before creating a

quotient!

4.11.16 IsSelfinjectiveAlgebra

. IsSelfinjectiveAlgebra(A) (property)

Arguments: A – a path algebra or a quotient of a path algebra.
Returns: fail if A is not finite dimensional. Otherwise it returns true or false according to whether

A is selfinjective or not.

4.11.17 IsSemicommutativeAlgebra

. IsSemicommutativeAlgebra(A) (property)

Arguments: A – a path algebra or a quotient of a path algebra.
Returns: true if A is a semicommutative algebra. By definition it means that:

1. A is schurian (cf. IsSchurianAlgebra (4.11.15)).
2. Quiver Q of A is acyclic (cf. IsAcyclicQuiver (3.3.2)).
3. For all pairs of vertices (x,y) the following condition is satisfied: for every two paths P,P′ from x
to y: P ∈ I⇔ P′ ∈ I.

Note: This method fail when a Groebner basis for ideal has not been computed before creating a
quotient!

4.11.18 IsSemisimpleAlgebra

. IsSemisimpleAlgebra(A) (property)

Arguments: A - an algebra over a field.
Returns: true if the entered algebra A is semisimple, false otherwise.
Checks if the algebra is finite dimensional. If it is an admissible quotients of a path algebra, it

only checks if the underlying quiver has any arrows or not. Otherwise, it computes the radical of the
algebra and checks if it is zero.

4.11.19 IsSpecialBiserialAlgebra

. IsSpecialBiserialAlgebra(A) (property)

Arguments: A – a path algebra or a quotient of a path algebra.
Returns: true whenever A is a special biserial algebra, i.e. A=KQ/I , where Q is
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IsSpecialBiserialQuiver (4.14.8), I is an admissible ideal (IsAdmissibleIdeal (4.8.1)) and
I satisfies the "special biserial" conditions, i.e.:

• for any arrow a there exists at most one arrow b such that ab does not belong to I

• there exists at most one arrow c such that ca does not belong to I.

Note: e.g. a path algebra of one loop IS NOT special biserial, but one loop IS special biserial
quiver (see IsSpecialBiserialQuiver (4.14.8) for examples).

4.11.20 IsStringAlgebra

. IsStringAlgebra(A) (property)

Arguments: A – a path algebra or a quotient of a path algebra.
Returns: true whenever A is a string (special biserial) algebra, i.e. A=KQ/I is a special biserial al-

gebra (IsSpecialBiserialAlgebra (4.11.19) and I is generated by monomials (= "zero-relations")
(cf. IsMonomialIdeal (4.8.3)). See IsSpecialBiserialQuiver (4.14.8) for examples.

4.11.21 IsSymmetricAlgebra

. IsSymmetricAlgebra(A) (property)

Arguments: A – a path algebra or a quotient of a path algebra.
Returns: fail if A is not finite dimensional or does not have a Groebner basis. Otherwise it returns

true or false according to whether A is symmetric or not.

4.11.22 IsTriangularReduced

. IsTriangularReduced(A) (property)

Arguments: A - a finite dimensional QuiverAlgebra.
Returns: false if the algebra A is triangular reducable, that is, there is a sum over vertices e

such that eA(1− e) = (0) for e 6= 0,1. Otherwise, it returns true.
The function checks if the algebra A is finite dimensional and gives an error message otherwise.

4.11.23 IsWeaklySymmetricAlgebra

. IsWeaklySymmetricAlgebra(A) (property)

Arguments: A – a path algebra or a quotient of a path algebra.
Returns: fail if A is not finite dimensional or does not have a Groebner basis. Otherwise it returns

true or false according to whether A is weakly symmetric or not.

4.11.24 BongartzTest

. BongartzTest(A, bound) (property)
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Arguments: A, bound – a path algebra or a quotient of a path algebra and an integer.
Returns: false if there exists a τ-translate of a simple, injective or projective A -module up to the

power bound has dimension greater or equal to max{2dimA,30}. Then A is of infinite representation
type. Returns fail otherwise.

4.11.25 IsFiniteTypeAlgebra

. IsFiniteTypeAlgebra(A) (property)

Arguments: A – a path algebra or a quotient of a path algebra.
Returns: Returns true if A is of finite representation type. Returns false if A is of infinite rep-

resentation type. Returns fail if we can not determine the representation type (i.e. it impossible from
theoretical/algorithmic point of view or a suitable criterion has not been implemented yet; the imple-
mentation is in progress). Note: in case A is a path algebra the function is completely implemented.

Example
gap> Q := Quiver(5, [ [1,2,"a"], [2,4,"b"], [3,2,"c"], [2,5,"d"] ]);
<quiver with 5 vertices and 4 arrows>
gap> A := PathAlgebra(Rationals, Q);
<Rationals[<quiver with 5 vertices and 4 arrows>]>
gap> IsFiniteTypeAlgebra(A);
Infinite type!
Quiver is not a (union of) Dynkin quiver(s).
false
gap> quo := A/[A.a*A.b, A.c*A.d];;
gap> IsFiniteTypeAlgebra(quo);
Finite type!
Special biserial algebra with no unoriented cycles in Q.
true

4.12 Attributes and Operations (for Quotients) of Path Algebras

4.12.1 CartanMatrix

. CartanMatrix(A) (operation)

Arguments: A – a path algebra or a quotient of a path algebra.
Returns: the Cartan matrix of the algebra A , after having checked that A is a finite dimensional

quotient of a path algebra.

4.12.2 Centre/Center

. Centre/Center(A) (operation)

Arguments: A – a path algebra or a quotient of a path algebra.
Returns: the centre of the algebra A as a subalgebra.
The function computes the center of A if A is a finite dimensional quotient of a path algebra or A

is a path algebra with on restriction on the underlying quiver.
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4.12.3 ComplexityOfAlgebra

. ComplexityOfAlgebra(A, n) (operation)

Arguments: A – a path algebra or a quotient of a path algebra, n – a positive integer.
Returns: an estimate of the complexity of the algebra A .
The function checks if the algebra A is known to have finite global dimension. If so, it returns

complexity zero. Otherwise it tries to estimate the complexity in the following way. Recall that if a
function f (x) is a polynomial in x, the degree of f (x) is given by limn→∞

log | f (n)|
logn . So then this function

computes an estimate of the maximal complexity of the simple modules over A by approximating the
complexity of each simple module S by considering the limit limm→∞ log dim(P(S)(m))

logm where P(S)(m)
is the m-th projective in a minimal projective resolution of S at stage m. This limit is estimated by
logdim(P(S)(n))

logn .

4.12.4 CoxeterMatrix

. CoxeterMatrix(A) (attribute)

Arguments: A – a path algebra or a quotient of a path algebra.
Returns: the Coxeter matrix of the algebra A , after having checked that A is a finite dimensional

quotient of a path algebra.

4.12.5 CoxeterPolynomial

. CoxeterPolynomial(A) (attribute)

Arguments: A – a path algebra or a quotient of a path algebra.
Returns: the Coxeter polynomial of the algebra A , after having checked that A is a finite dimen-

sional quotient of a path algebra.

4.12.6 Dimension

. Dimension(A) (attribute)

Arguments: A – a path algebra or a quotient of a path algebra.
Returns: the dimension of the algebra A or infinity in case A is an infinite dimensional algebra.
For a quotient of a path algebra it uses Groebner bases machinery (it computes Groebner basis for

the ideal only in case it has not been computed yet).

4.12.7 FrobeniusForm

. FrobeniusForm(A) (attribute)

Arguments: A – a quotient of a path algebra.
Returns: false if A is not selfinjective algebra. Otherwise it returns the Frobenius form of A .
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4.12.8 FrobeniusLinearFunctional

. FrobeniusLinearFunctional(A) (attribute)

Arguments: A – a quotient of a path algebra.
Returns: false if A is not selfinjective algebra. Otherwise it returns the Frobenius linear functional

of A , which is used to construct the Frobenius form.

4.12.9 GlobalDimension

. GlobalDimension(A) (attribute)

Arguments: A – an algebra.
Returns: the global dimension of the algebra A if it is known. Otherwise it returns an error

message saying "no method found!".
There is no method installed for this yet.

4.12.10 LoewyLength

. LoewyLength(A) (attribute)

Arguments: A – a path algebra or a quotient of a path algebra.
Returns: fail if A is not finite dimensional. Otherwise it returns the Loewy length of the algebra

A .

4.12.11 NakayamaAutomorphism

. NakayamaAutomorphism(A) (attribute)

Arguments: A – a path algebra or a quotient of a path algebra.
Returns: false if A is not selfinjective algebra. Otherwise it returns the Nakayama automorphism

of A .

4.12.12 NakayamaPermutation

. NakayamaPermutation(A) (attribute)

Arguments: A – a path algebra or a quotient of a path algebra.
Returns: false if A is not selfinjective algebra. Otherwise it returns a list of two elements where

the first is the Nakayama permutation on the simple modules and the second is the Nakayama permu-
tation on the index set of the simple modules of A .

4.12.13 OrderOfNakayamaAutomorphism

. OrderOfNakayamaAutomorphism(A) (attribute)
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Arguments: A – a path algebra or a quotient of a path algebra.
Returns: false if A is not selfinjective algebra. Otherwise it returns the order of the Nakayama

autormorphism of A .

4.12.14 RadicalSeriesOfAlgebra

. RadicalSeriesOfAlgebra(A) (attribute)

Arguments: A – an algebra.
Returns: the radical series of the algebra A in a list, where the first element is the algebra A itself,

then radical of A , radical square of A , and so on.

4.13 Attributes and Operations on Elements of Quotients of Path Alge-
bra

4.13.1 IsElementOfQuotientOfPathAlgebra

. IsElementOfQuotientOfPathAlgebra(object) (property)

Arguments: object – any object in GAP.
Returns: true whenever object is an element of some quotient of a path algebra.

Example
gap> elem := quot.a*quot.b;
[(1)*a*b]
gap> IsElementOfQuotientOfPathAlgebra(elem);
true
gap> IsElementOfQuotientOfPathAlgebra(FQ.a*FQ.b);
false

4.13.2 Coefficients

. Coefficients(B, element) (operation)

Arguments: B, element – a basis for a quotient of a path algebra and element thereof.
Returns: the coefficients of the element in terms of the canonical basis B of the quotient of a

path algebra in which element is an element.

4.13.3 IsNormalForm

. IsNormalForm(element) (operation)

Arguments: element – an element of a path algebra.
Returns: true if element is known to be in normal form.

Example
gap> IsNormalForm(elem);
true
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4.13.4 < (for two elements of a path algebra)

. <(a, b) (operation)

Arguments: a and b – elements from a path algebra.
Returns: true whenever a < b .

4.13.5 ElementOfQuotientOfPathAlgebra

. ElementOfQuotientOfPathAlgebra(family, element, computenormal) (operation)

Arguments: family – a family of elements, element – an element of a path algebra,
computenormal – true or false.

Returns: The projection of element into the quotient given by family . If computenormal is
false, then the normal form of the projection of element is returned.

family is the ElementsFamily of the family of the algebra element is projected into.

4.13.6 OriginalPathAlgebra

. OriginalPathAlgebra(algebra) (attribute)

Arguments: algebra – an algebra.
Returns: a path algebra.
If algebra is a quotient of a path algebra or just a path algebra itself, the returned algebra is the

path algebra it was constructed from. Otherwise it returns an error saying that the algebra entered was
not given as a quotient of a path algebra.

4.14 Predefined classes and classes of (quotients of) path algebras

4.14.1 BrauerConfigurationAlgebra

. BrauerConfigurationAlgebra(field, brauer_configuration) (function)

Arguments: field – a field, brauer_configuration – a list of the form [[vertices],
[edges/polygons], [orientations]].

Returns: the Brauer configuration algebra corresponding to the brauer configuration
brauer_configuration over the field field . If the brauer configuration entered is not valid, fail is
returned.

The brauer_configuration consists of vertices, polygons/edges, and orientations corrrespond-
ing to a Brauer Configuration or Brauer Tree. Each vertex must have the form ["vertexname",
multiplicity]. Each edge/polygon must have the form ["edgename", "vertex1name", "vertex2name",
...]. There must be an orientation corresponding to each vertex. Orientations must have the form
["edge1name/polygon1name", "edge2name/polygon2name", ...].

Example
gap> alg := BrauerConfigurationAlgebra(Rationals, [ [ [ "v1", 1 ], [ "v2", 1 ], [ "v3", 2 ] ], [ [ "e1", "v1", "v2" ], [ "e2", "v2", "v3" ] ], [ [ "e1" ], [ "e1", "e2" ], ["e2" ] ]]);
<A quotient of the path algebra <Rationals[<quiver with 2 vertices and
3 arrows>]> modulo the ideal
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<two-sided ideal in <Rationals[<quiver with 2 vertices and 3 arrows>]>,
(5 generators)>>

4.14.2 CanonicalAlgebra

. CanonicalAlgebra(field, weights[, relcoeff]) (operation)

Arguments: field – a field, weights – a list of positive integers, [, relcoeff – a list of non-zero
elements in the field.

Returns: the canonical algebra over the field with the quiver given by the weight sequence
weights and the relations given by the coefficients relcoeff .

It function checks if all the weights are greater or equal to two, the number of weights is at least
two, the number of coefficients is the number of weights - 2, the coefficients for the relations are in
field and non-zero. If only the two first arguments are given, then the number of weights must be two.

4.14.3 KroneckerAlgebra

. KroneckerAlgebra(field, n) (operation)

Arguments: field – a field, n – a positive integer.
Returns: the n -Kronecker algebra over the field field .
It function checks if the number n of arrows is greater or equal to two and returns an error message

if not.

4.14.4 NakayamaAlgebra

. NakayamaAlgebra(admiss-seq, field) (function)

Arguments: field – a field, admiss-seq – a list of positive integers.
Returns: the Nakayama algebra corresponding to the admissible sequence admiss-seq over the

field field . If the entered sequence is not an admissible sequence, the sequence is returned.
The admiss-seq consists of the dimensions of the projective representations.

Example
gap> alg := NakayamaAlgebra([2,1], Rationals);
<Rationals[<quiver with 2 vertices and 1 arrows>]>
gap> QuiverOfPathAlgebra(alg);
<quiver with 2 vertices and 1 arrows>

4.14.5 PosetAlgebra

. PosetAlgebra(F, P) (operation)

Arguments: F – a field, P – a poset.
Returns: the poset algebra associated to the poset P over the field K .
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4.14.6 PosetOfPosetAlgebra

. PosetOfPosetAlgebra(A) (attribute)

Arguments: A – a poset algebra.
Returns: the poset from which that poset algebra A is constructed.

4.14.7 TruncatedPathAlgebra

. TruncatedPathAlgebra(F, Q, n) (operation)

Arguments: F – a field, Q – a quiver, n – a positive integer.
Returns: the truncated path algebra KQ/I , where I is the ideal generated by all paths of length n

in KQ .

4.14.8 IsSpecialBiserialQuiver

. IsSpecialBiserialQuiver(Q) (property)

Arguments: Q – a quiver.
Returns: true whenever Q is a "special biserial" quiver, i.e. every vertex in Q is a source (resp.

target) of at most 2 arrows.
Note: e.g. a path algebra of one loop IS NOT special biserial, but one loop IS special biserial

quiver (cf. IsSpecialBiserialAlgebra (4.11.19) and also an Example below).
Example

gap> Q := Quiver(1, [ [1,1,"a"], [1,1,"b"] ]);;
gap> A := PathAlgebra(Rationals, Q);;
gap> IsSpecialBiserialAlgebra(A); IsStringAlgebra(A);
false
false
gap> rel1 := [A.a*A.b, A.a^2, A.b^2];
[ (1)*a*b, (1)*a^2, (1)*b^2 ]
gap> quo1 := A/rel1;;
gap> IsSpecialBiserialAlgebra(quo1); IsStringAlgebra(quo1);
true
true
gap> rel2 := [A.a*A.b-A.b*A.a, A.a^2, A.b^2];
[ (1)*a*b+(-1)*b*a, (1)*a^2, (1)*b^2 ]
gap> quo2 := A/rel2;;
gap> IsSpecialBiserialAlgebra(quo2); IsStringAlgebra(quo2);
true
false
gap> rel3 := [A.a*A.b+A.b*A.a, A.a^2, A.b^2, A.b*A.a];
[ (1)*a*b+(1)*b*a, (1)*a^2, (1)*b^2, (1)*b*a ]
gap> quo3 := A/rel3;;
gap> IsSpecialBiserialAlgebra(quo3); IsStringAlgebra(quo3);
true
true
gap> rel4 := [A.a*A.b, A.a^2, A.b^3];
[ (1)*a*b, (1)*a^2, (1)*b^3 ]
gap> quo4 := A/rel4;;
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gap> IsSpecialBiserialAlgebra(quo4); IsStringAlgebra(quo4);
false
false

4.15 Opposite algebras

4.15.1 OppositePath

. OppositePath(p) (operation)

Arguments: p – a path.
Returns: the path corresponding to p in the opposite quiver.
The following example illustrates the use of OppositeQuiver (3.5.9) and OppositePath

(4.15.1).
Example

gap> Q := Quiver( [ "u", "v" ], [ [ "u", "u", "a" ],
> [ "u", "v", "b" ] ] );
<quiver with 2 vertices and 2 arrows>
gap> Qop := OppositeQuiver(Q);
<quiver with 2 vertices and 2 arrows>
gap> VerticesOfQuiver( Qop );
[ u_op, v_op ]
gap> ArrowsOfQuiver( Qop );
[ a_op, b_op ]
gap> OppositePath( Q.a * Q.b );
b_op*a_op
gap> IsIdenticalObj( Q, OppositeQuiver( Qop ) );
true
gap> OppositePath( Qop.b_op * Qop.a_op );
a*b

4.15.2 OppositePathAlgebra

. OppositePathAlgebra(A) (attribute)

Arguments: A – a path algebra or quotient of path algebra.
Returns: the opposite algebra A op.
This attribute contains the opposite algebra of an algebra.
The opposite algebra of a path algebra is the path algebra over the opposite quiver (as given by

OppositeQuiver (3.5.9)). The opposite algebra of a quotient of a path algebra has the opposite quiver
and the opposite relations of the original algebra.

The function OppositePathAlgebraElement (4.15.3) takes an algebra element to the corre-
sponding element in the opposite algebra.

The opposite of the opposite of an algebra A is isomorphic to A. In QPA, we regard these two
algebras to be the same, so the call OppositePathAlgebra(OppositePathAlgebra(A)) returns
the object A.
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4.15.3 OppositePathAlgebraElement

. OppositePathAlgebraElement(x) (function)

Arguments: x – a path.
Returns: the element corresponding to x in the opposite algebra.
The following example illustrates the use of OppositePathAlgebra (4.15.2) and

OppositePathAlgebraElement (4.15.3).
Example

gap> Q := Quiver( [ "u", "v" ], [ [ "u", "u", "a" ],
> [ "u", "v", "b" ] ] );
<quiver with 2 vertices and 2 arrows>
gap> A := PathAlgebra( Rationals, Q );
<Rationals[<quiver with 2 vertices and 2 arrows>]>
gap> OppositePathAlgebra( A );
<Rationals[<quiver with 2 vertices and 2 arrows>]>
gap> OppositePathAlgebraElement( A.u + 2*A.a + 5*A.a*A.b );
(1)*u_op+(2)*a_op+(5)*b_op*a_op
gap> IsIdenticalObj( A,
> OppositePathAlgebra( OppositePathAlgebra( A ) ) );
true

4.16 Tensor products of path algebras

If Λ and Γ are quotients of path algebras over the same field F , then their tensor product Λ⊗F Γ is
also a quotient of a path algebra over F .

The quiver for the tensor product path algebra is the QuiverProduct (4.16.1) of the quivers of the
original algebras.

The operation TensorProductOfAlgebras (4.16.6) computes the tensor products of two quo-
tients of path algebras as a quotient of a path algebra.

4.16.1 QuiverProduct

. QuiverProduct(Q1, Q2) (operation)

Arguments: Q1 and Q2 – quivers.
Returns: the product quiver Q1 ×Q2 .
A vertex in Q1 ×Q2 which is made by combining a vertex named u in Q1 with a vertex v in Q2 is

named u_v. Arrows are named similarly (they are made by combining an arrow from one quiver with
a vertex from the other).

4.16.2 QuiverProductDecomposition

. QuiverProductDecomposition(Q) (attribute)

Arguments: Q – a quiver.
Returns: the original quivers Q is a product of, if Q was created by the QuiverProduct (4.16.1)

operation.
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The value of this attribute is an object in the category IsQuiverProductDecomposition
(4.16.3).

4.16.3 IsQuiverProductDecomposition

. IsQuiverProductDecomposition(object) (category)

Arguments: object – any object in GAP.
Category for objects containing information about the relation between a product quiver and the

quivers it is a product of. The quiver factors can be extracted from the decomposition object by
using the [] notation (like accessing elements of a list). The decomposition object is also used by the
operations IncludeInProductQuiver (4.16.4) and ProjectFromProductQuiver (4.16.5).

4.16.4 IncludeInProductQuiver

. IncludeInProductQuiver(L, Q) (operation)

Arguments: L – a list containing the paths q1 and q2, Q – a product quiver.
Returns: a path in Q .
Includes paths q1 and q2 from two quivers into the product of these quivers, Q . If at least one of q1

and q2 is a vertex, there is exactly one possible inclusion. If they are both non-trivial paths, there are
several possibilities. This operation constructs the path which is the inclusion of q1 at the source of q2
multiplied with the inclusion of q2 at the target of q1.

4.16.5 ProjectFromProductQuiver

. ProjectFromProductQuiver(i, p) (operation)

Arguments: i – a positive integer, p – a path in the product quiver.
Returns: the projection of the product quiver path p to one of the factors. Which factor it should

be projected to is specified by the argument i .
The following example shows how the operations related to quiver products are used.

Example
gap> q1 := Quiver( [ "u1", "u2" ], [ [ "u1", "u2", "a" ] ] );
<quiver with 2 vertices and 1 arrows>
gap> q2 := Quiver( [ "v1", "v2", "v3" ],

[ [ "v1", "v2", "b" ],
[ "v2", "v3", "c" ] ] );

<quiver with 3 vertices and 2 arrows>
gap> q1_q2 := QuiverProduct( q1, q2 );
<quiver with 6 vertices and 7 arrows>
gap> q1_q2.u1_b * q1_q2.a_v2;
u1_b*a_v2
gap> IncludeInProductQuiver( [ q1.a, q2.b * q2.c ], q1_q2 );
a_v1*u2_b*u2_c
gap> ProjectFromProductQuiver( 2, q1_q2.a_v1 * q1_q2.u2_b * q1_q2.u2_c );
b*c
gap> q1_q2_dec := QuiverProductDecomposition( q1_q2 );
<object>
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gap> q1_q2_dec[ 1 ];
<quiver with 2 vertices and 1 arrows>
gap> q1_q2_dec[ 1 ] = q1;
true

4.16.6 TensorProductOfAlgebras

. TensorProductOfAlgebras(FQ1, FQ2) (operation)

Arguments: FQ1 and FQ2 – (quotients of) path algebras.
Returns: The tensor product of FQ1 and FQ2 .
The result is a quotient of a path algebra, whose quiver is the QuiverProduct (4.16.1) of the

quivers of the operands.

4.16.7 TensorAlgebrasInclusion

. TensorAlgebrasInclusion(T, n) (operation)

Arguments: T – quiver algebra, n – 1 or 2.
Returns: Returns the inclusion A ↪→ A⊗B or the inclusion B ↪→ A⊗B if n = 1 or n = 2, respec-

tively.

4.16.8 SimpleTensor

. SimpleTensor(L, T) (operation)

Arguments: L – a list containing two elements x and y of two (quotients of) path algebras, T – the
tensor product of these algebras.

Returns: the simple tensor x⊗ y.
x⊗ y is in the tensor product T (produced by TensorProductOfAlgebras (4.16.6)).

4.16.9 TensorProductDecomposition

. TensorProductDecomposition(T) (attribute)

Arguments: T – a tensor product of path algebras.
Returns: a list of the factors in the tensor product.
T should be produced by TensorProductOfAlgebras (4.16.6)).
The following example shows how the operations for tensor products of quotients of path algebras

are used.
Example

gap> q1 := Quiver( [ "u1", "u2" ], [ [ "u1", "u2", "a" ] ] );
<quiver with 2 vertices and 1 arrows>
gap> q2 := Quiver( [ "v1", "v2", "v3", "v4" ],
> [ [ "v1", "v2", "b" ],
> [ "v1", "v3", "c" ],
> [ "v2", "v4", "d" ],
> [ "v3", "v4", "e" ] ] );
<quiver with 4 vertices and 4 arrows>
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gap> fq1 := PathAlgebra( Rationals, q1 );
<Rationals[<quiver with 2 vertices and 1 arrows>]>
gap> fq2 := PathAlgebra( Rationals, q2 );
<Rationals[<quiver with 4 vertices and 4 arrows>]>
gap> I := Ideal( fq2, [ fq2.b * fq2.d - fq2.c * fq2.e ] );
<two-sided ideal in <Rationals[<quiver with 4 vertices and 4 arrows>]>

, (1 generators)>
gap> quot := fq2 / I;
<Rationals[<quiver with 4 vertices and 4 arrows>]/
<two-sided ideal in <Rationals[<quiver with 4 vertices and 4 arrows>]>

, (1 generators)>>
gap> t := TensorProductOfAlgebras( fq1, quot );
<Rationals[<quiver with 8 vertices and 12 arrows>]/
<two-sided ideal in <Rationals[<quiver with 8 vertices and

12 arrows>]>, (6 generators)>>
gap> SimpleTensor( [ fq1.a, quot.b ], t );
[(1)*u1_b*a_v2]
gap> t_dec := TensorProductDecomposition( t );
[ <Rationals[<quiver with 2 vertices and 1 arrows>]>,

<Rationals[<quiver with 4 vertices and 4 arrows>]/
<two-sided ideal in <Rationals[<quiver with 4 vertices and

4 arrows>]>, (1 generators)>> ]
gap> t_dec[ 1 ] = fq1;
true

4.16.10 EnvelopingAlgebra

. EnvelopingAlgebra(A) (attribute)

Arguments: A – a (quotient of) a path algebra.
Returns: the enveloping algebra A e = A op⊗A of A

4.16.11 IsEnvelopingAlgebra

. IsEnvelopingAlgebra(A) (property)

Arguments: A – an algebra.
Returns: true if and only if A is the result of a call to EnvelopingAlgebra (4.16.10).

4.16.12 AlgebraAsModuleOverEnvelopingAlgebra

. AlgebraAsModuleOverEnvelopingAlgebra(A) (attribute)

Arguments: A – a (quotient of a) path algebra A .
Returns: the algebra A as a right module over the enveloping algebra of A .

4.16.13 DualOfAlgebraAsModuleOverEnvelopingAlgebra

. DualOfAlgebraAsModuleOverEnvelopingAlgebra(A) (attribute)
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Arguments: A – a finite dimensional (admissible quotient of) a path algebra A .
Returns: the algebra A as a right module over the enveloping algebra of A .

4.16.14 TrivialExtensionOfQuiverAlgebra

. TrivialExtensionOfQuiverAlgebra(A) (attribute)

Arguments: A – a finite dimensional (admissible quotient of) a path algebra A .
Returns: the trivial extension algebra T (A) = A⊕D(A) of the entered algebra A .

4.17 Operations on quiver algebras

4.17.1 QuiverAlgebraOfAmodAeA

. QuiverAlgebraOfAmodAeA(A, elist) (operation)

Arguments: A , elist - a finite dimensional quiver algebra and a list of integers.
Returns: a quiver algebra isomorphic A modulo the ideal generated by a sum of vertices in A .
Given a quiver algebra A and a sum of vertices e, this function computes the quiver algebra A/AeA.

The list elist is a list of integers, where each integer occurring in the list corresponds to the position
of the vertex in the vertices defining the idempotent e.

4.17.2 QuiverAlgebraOfeAe

. QuiverAlgebraOfeAe(A, elist) (operation)

Arguments: A , e - a finite dimensional quiver algebra and an idempotent.
Returns: a quiver algebra isomorphic eAe, where A is the entered algebra and e is the entered

idempotent.
Given a quiver algebra A and an idempotent e , this function computes the quiver algebra isomor-

phic to eAe. The function checks if the entered element e is an idempotent in A .

4.18 Finite dimensional algebras over finite fields

4.18.1 AlgebraAsQuiverAlgebra

. AlgebraAsQuiverAlgebra(A) (operation)

Arguments: A - a finite dimensional algebra over a finite field.
Returns: a (quotient of a) path algebra isomorphic to the entered algebra A whenever possible

and a list of the images of the vertices and the arrows in this path algebra in A .
The operation only applies when A is a finite dimensional indecomposable algebra over a finite

field, otherwise it returns an error message. It checks the algebra A is basic and elementary over some
field and otherwise it returns an error message. In the list of images the images of the vertices are
listed first and then the images of the arrows.
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4.18.2 BlocksOfAlgebra

. BlocksOfAlgebra(A) (operation)

Arguments: A - a finite dimensional algebra.
Returns: a block decomposition of the entered algebra A as a list of indecomposable algebras.

4.18.3 IsBasicAlgebra

. IsBasicAlgebra(A) (property)

Arguments: A - a finite dimensional algebra over a finite field.
Returns: true if the entered algebra A is a (finite dimensional) basic algebra and false otherwise.

This method only applies to algebras over finite fields.

4.18.4 IsElementaryAlgebra

. IsElementaryAlgebra(A) (property)

Arguments: A - a finite dimensional algebra over a finite field.
Returns: true if the entered algebra A is a (finite dimensional) elementary algebra and false

otherwise. This method only applies to algebras over finite fields.
The algebra A need not to be an elementary algebra over the field which it is defined, but be an

elementary algebra over a field extension.

4.18.5 PreprojectiveAlgebra

. PreprojectiveAlgebra(M, n) (operation)

Arguments: M - a path algebra module over finite dimensional hereditary algebra over a finite field,
n - an integer.

Returns: the preprojective algebra of the module M if it only has support up to degree n .

4.18.6 PrimitiveIdempotents

. PrimitiveIdempotents(A) (attribute)

Arguments: A - a finite dimensional simple algebra over a finite field.
Returns: a complete set of primitive idempotents {ei} such that A' Ae1 + ...+Aen.
TODO: Understand what this function actually does.

4.19 Algebras

4.19.1 LiftingCompleteSetOfOrthogonalIdempotents

. LiftingCompleteSetOfOrthogonalIdempotents(f, e) (operation)
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Arguments: map - an algebra homomorphism, idempotents elements in the range of map .
Returns: a complete set of orthogonal idempotents in Source(f) which are liftings of the entered

idempotents whenever possible.
The operation only applies when the domain of f is finite dimensional. It checks if the list of

elements idempotents is a set complete set of orthogonal idempotents. If some idempotent in
idempotents is not in the image of map , then an error message is returned. If all idempotents in
idempotents has a preimage, then this operation returns a complete set of orthogonal of idempo-
tents which is a lifting of the idempotents in idempotents to the source of f whenever possible or it
returns fail.

4.19.2 LiftingIdempotent

. LiftingIdempotent(f, e) (operation)

Arguments: f - an algebra homomorphism, e an element in the range of f .
Returns: an idempotent a in Source(f) such that ImageElm(f, a) = e whenever possible. If

e is not in the image of f , an error message is given, and if e does not have a preimage by f fail is
returned.

The operation only applies when the domain of f is finite dimensional. It checks if the element e
is an idempotent. If e is not in the image of f , then an error message is returned. If e has a preimage,
then this operation returns a lifting of e to the source of f whenever possible or it returns fail. Using
the algorithm described in the proof of Proposition 27.1 in Anderson and Fuller, Rings and categories
of modules, second edition, GMT, Springer-Verlag.

4.20 Saving and reading quotients of path algebras to and from a file

4.20.1 ReadAlgebra

. ReadAlgebra(string) (operation)

Arguments: string - a name of a file.
Returns: a finite dimension quotient A of a path algebra saved by command SaveAlgebra to the

file string . This function creates the algebra A again, which can be saved to a file again with the
function SaveAlgebra.

4.20.2 SaveAlgebra

. SaveAlgebra(A, string, action) (operation)

Arguments: A - an algebra, string - a name of a file, action - a string.
Returns: or creates a file with name string , storing the algebra A , which can be opened again

with the function ReadAlgebra and reconstructed. The last argument action decides if the file
string , if it exists already, should be overwritten, not overwritten or the user should be prompted for
an answer to this question. The corresponding user inputs are: "delete", "keep" or "query".



Chapter 5

Groebner Basis

This chapter contains the declarations and implementations needed for Groebner basis. Currently,
we do not provide algorithms to actually compute Groebner basis; instead, the declarations and imple-
mentations are provided here for GAP objects and the actual elements of Groebner basis are computed
by the GBNP package.

5.1 Constructing a Groebner Basis

5.1.1 InfoGroebnerBasis

. InfoGroebnerBasis (info class)

is the info class for functions dealing with Groebner basis.

5.1.2 GroebnerBasis

. GroebnerBasis(I, rels) (operation)

Arguments: I – an ideal, rels – a list of relations generating I .
Returns: an object GB in the IsGroebnerBasis (5.2.3) category with

IsCompleteGroebnerBasis (5.2.2) property set on true.
Sets also GB as a value of the attribute GroebnerBasisOfIdeal (4.10.1) for I (so one has an

access to it by calling GroebnerBasisOfIdeal(I )).
There are absolutely no computations and no checks for correctness in this function. Giving a set
of relations that does not form a Groebner basis may result in incorrect answers or unexpected er-
rors. This function is intended to be used by packages providing access to external Groebner basis
programs and should be invoked before further computations on Groebner basis or ideal I (cf. also
IsCompleteGroebnerBasis (5.2.2)).

5.2 Categories and Properties of Groebner Basis

5.2.1 IsCompletelyReducedGroebnerBasis

. IsCompletelyReducedGroebnerBasis(gb) (property)
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Arguments: GB – a Groebner basis.
Returns: true when GB is a Groebner basis which is completely reduced.

5.2.2 IsCompleteGroebnerBasis

. IsCompleteGroebnerBasis(gb) (property)

Arguments: GB – a Groebner basis.
Returns: true when GB is a complete Groebner basis.
While philosophically something that isn’t a complete Groebner basis isn’t a Groebner basis at all,

this property can be used in conjuction with other properties to see if the the Groebner basis contains
enough information for computations. An example of a system that creates incomplete Groebner bases
is ‘Opal’.
Note: The current package used for creating Groebner bases is GBNP, and this package does not
create incomplete Groebner bases.

5.2.3 IsGroebnerBasis

. IsGroebnerBasis(object) (category)

Arguments: object – any object in GAP.
Returns: true when object is a Groebner basis and false otherwise.
The function only returns true for Groebner bases that has been set as such using the

GroebnerBasis function, as illustrated in the following example.

5.2.4 IsHomogeneousGroebnerBasis

. IsHomogeneousGroebnerBasis(gb) (property)

Arguments: GB – a Groebner basis.
Returns: true when GB is a Groebner basis which is homogenous.

Example
gap> Q := Quiver( 3, [ [1,2,"a"], [2,3,"b"] ] );
<quiver with 3 vertices and 2 arrows>
gap> PA := PathAlgebra( Rationals, Q );
<Rationals[<quiver with 3 vertices and 2 arrows>]>
gap> rels := [ PA.a*PA.b ];
[ (1)*a*b ]
gap> gb := GBNPGroebnerBasis( rels, PA );
[ (1)*a*b ]
gap> I := Ideal( PA, gb );
<two-sided ideal in <Rationals[<quiver with 3 vertices and 2 arrows>]>

, (1 generators)>
gap> grb := GroebnerBasis( I, gb );
<complete two-sided Groebner basis containing 1 elements>
gap> alg := PA/I;
<Rationals[<quiver with 3 vertices and 2 arrows>]/
<two-sided ideal in <Rationals[<quiver with 3 vertices and 2 arrows>]>

, (1 generators)>>
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gap> IsGroebnerBasis(gb);
false
gap> IsGroebnerBasis(grb);
true

5.2.5 IsTipReducedGroebnerBasis

. IsTipReducedGroebnerBasis(gb) (property)

Arguments: GB – a Groebner Basis.
Returns: true when GB is a Groebner basis which is tip reduced.

5.3 Attributes and Operations for Groebner Basis

5.3.1 AdmitsFinitelyManyNontips

. AdmitsFinitelyManyNontips(GB) (operation)

Arguments: GB – a complete Groebner basis.
Returns: true if the Groebner basis admits only finitely many nontips and false otherwise.

5.3.2 CompletelyReduce

. CompletelyReduce(GB, a) (operation)

Arguments: GB – a Groebner basis, a – an element in a path algebra.
Returns: a reduced by GB .
If a is already completely reduced, the original element a is returned.

5.3.3 CompletelyReduceGroebnerBasis

. CompletelyReduceGroebnerBasis(GB) (operation)

Arguments: GB – a Groebner basis.
Returns: the completely reduced Groebner basis of the ideal generated by GB .
The operation modifies a Groebner basis GB such that each relation in GB is completely reduced.

The IsCompletelyReducedGroebnerBasis and IsTipReducedGroebnerBasis properties are set
as a result of this operation. The resulting relations will be placed in sorted order according to the
ordering of GB .

5.3.4 Enumerator

. Enumerator(GB) (operation)

Arguments: GB – a Groebner basis.
Returns: an enumerat that enumerates the relations making up the Groebner basis.
These relations should be enumerated in ascending order with respect to the ordering for the family

the elements are contained in.
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5.3.5 IsPrefixOfTipInTipIdeal

. IsPrefixOfTipInTipIdeal(GB, R) (operation)

Arguments: GB – a Groebner basis, R – a relation.
Returns: true if the tip of the relation R is in the tip ideal generated by the tips of GB .
This is used mainly for the construction of right Groebner basis, but is made available for general

use in case there are other unforseen applications.

5.3.6 Iterator

. Iterator(GB) (operation)

Arguments: GB – a Groebner basis.
Returns: an iterator (in the IsIterator category, see the GAP manual, chapter 28.7).
Creates an iterator that iterates over the relations making up the Groebner basis. These relations are

iterated over in ascending order with respect to the ordering for the family the elements are contained
in.

5.3.7 Nontips

. Nontips(GB) (attribute)

Arguments: GB – a Groebner basis.
Returns: a list of nontip elements for GB .
In order to compute the nontip elements, the Groebner basis must be complete and tip reduced,

and there must be a finite number of nontips. If there are an infinite number of nontips, the operation
returns ‘fail’.

5.3.8 NontipSize

. NontipSize(GB) (operation)

Arguments: GB – a complete Groebner basis.
Returns: the number of nontips admitted by GB .

5.3.9 TipReduce

. TipReduce(GB, a) (operation)

Arguments: GB – a Groebner basis, a - an element in a path algebra.
Returns: the element a tip reduced by the Groebner basis.
If a is already tip reduced, then the original a is returned.

5.3.10 TipReduceGroebnerBasis

. TipReduceGroebnerBasis(GB) (operation)
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Arguments: GB – a Groebner basis.
Returns: a tip reduced Groebner basis.
The returned Groebner basis is equivalent to GB If GB is already tip reduced, this function returns

the original object GB , possibly with the addition of the ‘IsTipReduced‘’ property set.

5.4 Right Groebner Basis

In this section we support right Groebner basis for two-sided ideals with Groebner basis. More general
cases may be supported in the future.

5.4.1 IsRightGroebnerBasis

. IsRightGroebnerBasis(object) (property)

Arguments: object – any object in GAP.
Returns: true when object is a right Groebner basis.

5.4.2 RightGroebnerBasis

. RightGroebnerBasis(I) (operation)

Arguments: I – a right ideal.
Returns: a right Groebner basis for I , which must support a right Groebner basis theory. Right

now, this requires that I has a complete Groebner basis.

5.4.3 RightGroebnerBasisOfIdeal

. RightGroebnerBasisOfIdeal(I) (attribute)

Arguments: I – a right ideal.
Returns: a right Groebner basis of a right ideal, I , if one has been computed.



Chapter 6

Right Modules over Path Algebras

There are two implementations of right modules over path algebras. The first type are matrix modules
that are defined by vector spaces and linear transformations. The second type is presentations defined
by vertex projective modules (see 6.7).

6.1 Modules of matrix type

The first implementation of right modules over path algebras views them as a collection of vector
spaces and linear transformations. Each vertex in the path algebra is associated with a vector space
over the field of the algebra. For each vertex v of the algebra there is a vector space V . Arrows of
the algebra are then associated with linear transformations which map the vector space of the source
vertex to the vector space of the target vertex. For example, if a is an arrow from v to w, then there
is a transformation from vector space V to W . Given the dimension vector of the module we want to
construct, the information we need to provide is the non-zero linear transformations. The size of the
matrices for the zero linear transformation are given when we know the dimension vector. Alterna-
tively, if we enter all the transformations, we can create the vector spaces of the correct dimension,
and check to make sure the dimensions all agree. We can create a module in this way as follows.

6.1.1 RightModuleOverPathAlgebra (with dimension vector)

. RightModuleOverPathAlgebra(A, dim_vector, gens) (operation)

. RightModuleOverPathAlgebra(A, mats) (operation)

. RightModuleOverPathAlgebraNC(A, mats) (operation)

Arguments: A – a (quotient of a) path algebra and dim_vector – the dimension vector of the
module, gens or mats – a list of matrices. For further explanations, see below.

Returns: a module over a path algebra or over a qoutient of a path algebra.
In the first function call, the second argument dim_vector is the dimension vector of the

module, and the last argument gens (maybe an empty list []) is a list of elements of the form
["label",matrix]. This function constructs a right module over a (quotient of a) path algebra A
with dimension vector dim_vector , and where the generators/arrows with a non-zero action is given
in the list gens . The format of the list gens is [["a",[matrix_a]],["b",[matrix_b]],...], where "a" and
"b" are labels of arrows used when the underlying quiver was created and matrix_? is the action of the
algebra element corresponding to the arrow with label "?". The action of the arrows can be entered in
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any order. The function checks (i) if the algebra A is a (quotient of a) path algebra, (ii) if the matrices
of the action of the arrows have the correct size according to the dimension vector entered, (iii) also
whether or not the relations of the algebra are satisfied and (iv) if all matrices are over the correct field.

In the second function call, the list of matrices mats can take on three different forms. The
function checks (i), (ii), (iii) and (iv) as above.

1) The argument mats can be a list of blocks of matrices where each block is of the form, ‘["name
of arrow",matrix]’. So if you named your arrows when you created the quiver, then you can associate
a matrix with that arrow explicitly.

2) The argument mats is just a list of matrices, and the matrices will be associated to the arrows
in the order of arrow creation. If when creating the quiver, the arrow a was created first, then a would
be associated with the first matrix.

3) The method is very much the same as the second method. If arrows is a list of the arrows
of the quiver (obtained for instance through arrows := ArrowsOfQuiver(Q);), the argument mats
can have the format [[arrows[1],matrix_1],[arrows[2],matrix_2],.... ].

If you would like the trivial vector space at any vertex, then for each incoming arrow "a", associate
it with a list of the form ["a",[n,0]] where n is the dimension of the vector space at the source vertex
of the arrow. Likewise for all outgoing arrows "b", associate them to a block of form ["b",[0,n]]
where n is the dimension of the vector space at the target vertex of the arrow.

The third function call is the same as the second except that the check (iv) is not performed.
A warning though, the function assumes that you do not mix the styles of inputting the matri-

ces/linear transformations associated to the arrows in the quiver. Furthermore in the two last versions,
each arrow needs to be assigned a matrix, otherwise an error will be returned.

6.1.2 RightAlgebraModuleToPathAlgebraMatModule

. RightAlgebraModuleToPathAlgebraMatModule(M) (operation)

Arguments: M – a right module over an algebra.
Returns: a module over a (qoutient of a) path algebra.
This function constructs a right module over a (quotient of a) path algebra A from a RightAlge-

braModule over the same algebra A. The function checks if A actually is a quotient of a path algebra
and if the module M is finite dimensional and if not, it returns an error message.

6.1.3 \= (for two path algebra matrix modules)

. \=(M, N) (operation)

Arguments: M, N – two path algebra matrix modules.
Returns: true if M and N has the same dimension vectors and the same matrices defining the

module structure.
Example

gap> Q := Quiver(2, [[1, 2, "a"], [2, 1, "b"],[1, 1, "c"]]);
<quiver with 2 vertices and 3 arrows>
gap> P := PathAlgebra(Rationals, Q);
<Rationals[<quiver with 2 vertices and 3 arrows>]>
gap> matrices := [["a", [[1,0,0],[0,1,0]]],
> ["b", [[0,1],[1,0],[0,1]]],
> ["c", [[0,0],[1,0]]]];
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[ [ "a", [ [ 1, 0, 0 ], [ 0, 1, 0 ] ] ],
[ "b", [ [ 0, 1 ], [ 1, 0 ], [ 0, 1 ] ] ],
[ "c", [ [ 0, 0 ], [ 1, 0 ] ] ] ]

gap> M := RightModuleOverPathAlgebra(P,matrices);
<[ 2, 3 ]>
gap> mats := [ [[1,0,0], [0,1,0]], [[0,1],[1,0],[0,1]],
> [[0,0],[1,0]] ];;
gap> N := RightModuleOverPathAlgebra(P,mats);
<[ 2, 3 ]>
gap> arrows := ArrowsOfQuiver(Q);
[ a, b, c ]
gap> mats := [[arrows[1], [[1,0,0],[0,1,0]]],
> [arrows[2], [[0,1],[1,0],[0,1]]],
> [arrows[3], [[0,0],[1,0]]]];;
gap> N := RightModuleOverPathAlgebra(P,mats);
<[ 2, 3 ]>
gap> # Next we give the vertex simple associate to vertex 1.
gap> M := RightModuleOverPathAlgebra(P,[["a",[1,0]],["b",[0,1]],
> ["c",[[0]]]]);
<[ 1, 0 ]>
gap> # The zero module.
gap> M := RightModuleOverPathAlgebra(P,[["a",[0,0]],["b",[0,0]],
> ["c",[0,0]]]);
<[ 0, 0 ]>
gap> Dimension(M);
0
gap> Basis(M);
Basis( <[ 0, 0 ]>, ... )
gap> matrices := [["a", [[1,0,0],[0,1,0]]], ["b",
> [[0,1],[1,0],[0,1]]], ["c", [[0,0],[1,0]]]];
[ [ "a", [ [ 1, 0, 0 ], [ 0, 1, 0 ] ] ],

[ "b", [ [ 0, 1 ], [ 1, 0 ], [ 0, 1 ] ] ],
[ "c", [ [ 0, 0 ], [ 1, 0 ] ] ] ]

gap> M := RightModuleOverPathAlgebra(P,[2,3],matrices);
<[ 2, 3 ]>
gap> M := RightModuleOverPathAlgebra(P,[2,3],[]);
<[ 2, 3 ]>
gap> A := P/[P.c^2 - P.a*P.b, P.a*P.b*P.c, P.b*P.c];
<Rationals[<quiver with 2 vertices and 3 arrows>]/
<two-sided ideal in <Rationals[<quiver with 2 vertices and 3 arrows>]>

, (4 generators)>>
gap> Dimension(A);
9
gap> Amod := RightAlgebraModule(A,\*,A);
<9-dimensional right-module over <Rationals[<quiver with
2 vertices and 3 arrows>]/
<two-sided ideal in <Rationals[<quiver with 2 vertices and 3 arrows>]>

, (4 generators)>>>
gap> RightAlgebraModuleToPathAlgebraMatModule(Amod);
<[ 4, 5 ]>
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6.2 Categories Of Matrix Modules

6.2.1 IsPathAlgebraMatModule

. IsPathAlgebraMatModule(object) (filter)

Returns: true or false depending on whether object belongs to the category
IsPathAlgebraMatModule.

These matrix modules fall under the category ‘IsAlgebraModule’ with the added filter of ‘Is-
PathAlgebraMatModule’. Operations available for algebra modules can be applied to path algebra
modules. See Reference: Representations of Algebras for more details. These modules are also
vector spaces over the field of the path algebra. So refer to Reference: Vector Spaces for descriptions
of the basis and elementwise operations available.

6.3 Acting on Module Elements

6.3.1 ^ (a PathAlgebraMatModule element and a PathAlgebra element)

. ^(m, p) (operation)

Arguments: m – an element in a module, p – an element in a quiver algebra.
Returns: the element m multiplied with p .
When you act on an module element m by an arrow a from v to w, the component of m from V is

acted on by L the transformation associated to a and placed in the component W . All other components
are given the value 0.

Example
gap> # Using the path algebra P from the above example.
gap> matrices := [["a", [[1,0,0],[0,1,0]]],
> ["b", [[0,1],[1,0],[0,1]]], ["c", [[0,0],[1,0]]]];
[ [ "a", [ [ 1, 0, 0 ], [ 0, 1, 0 ] ] ],

[ "b", [ [ 0, 1 ], [ 1, 0 ], [ 0, 1 ] ] ],
[ "c", [ [ 0, 0 ], [ 1, 0 ] ] ] ]

gap> M := RightModuleOverPathAlgebra(P,matrices);
<[ 2, 3 ]>
gap> B:=BasisVectors(Basis(M));
[ [ [ 1, 0 ], [ 0, 0, 0 ] ], [ [ 0, 1 ], [ 0, 0, 0 ] ],

[ [ 0, 0 ], [ 1, 0, 0 ] ], [ [ 0, 0 ], [ 0, 1, 0 ] ],
[ [ 0, 0 ], [ 0, 0, 1 ] ] ]

gap> B[1] + B[3];
[ [ 1, 0 ], [ 1, 0, 0 ] ]
gap> 4*B[2];
[ [ 0, 4 ], [ 0, 0, 0 ] ]
gap> m := 5*B[1] + 2*B[4]+B[5];
[ [ 5, 0 ], [ 0, 2, 1 ] ]
gap> m^(P.a*P.b-P.c);
[ [ 0, 5 ], [ 0, 0, 0 ] ]
gap> B[1]^P.a;
[ [ 0, 0 ], [ 1, 0, 0 ] ]
gap> B[2]^P.b;
[ [ 0, 0 ], [ 0, 0, 0 ] ]
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gap> B[4]^(P.b*P.c);
[ [ 0, 0 ], [ 0, 0, 0 ] ]

6.4 Operations on representations
Example

gap> Q := Quiver(3,[[1,2,"a"],[1,2,"b"],[2,2,"c"],[2,3,"d"],
> [3,1,"e"]]);
<quiver with 3 vertices and 5 arrows>
gap> KQ := PathAlgebra(Rationals, Q);
<Rationals[<quiver with 3 vertices and 5 arrows>]>
gap> gens := GeneratorsOfAlgebra(KQ);
[ (1)*v1, (1)*v2, (1)*v3, (1)*a, (1)*b, (1)*c, (1)*d, (1)*e ]
gap> u := gens[1];; v := gens[2];;
gap> w := gens[3];; a := gens[4];;
gap> b := gens[5];; c := gens[6];;
gap> d := gens[7];; e := gens[8];;
gap> rels := [d*e,c^2,a*c*d-b*d,e*a];;
gap> A := KQ/rels;
<Rationals[<quiver with 3 vertices and 5 arrows>]/
<two-sided ideal in <Rationals[<quiver with 3 vertices and 5 arrows>]>

, (5 generators)>>
gap> mat := [["a",[[1,2],[0,3],[1,5]]],["b",[[2,0],[3,0],[5,0]]],
> ["c",[[0,0],[1,0]]],["d",[[1,2],[0,1]]],["e",[[0,0,0],[0,0,0]]]];;
gap> N := RightModuleOverPathAlgebra(A,mat);
<[ 3, 2, 2 ]>

6.4.1 AnnihilatorOfModule

. AnnihilatorOfModule(M) (operation)

Arguments: M – a path algebra module.
Returns: a basis of the annihilator of the module M in the finite dimensional algebra over which

M is a module.

6.4.2 BasicVersionOfModule

. BasicVersionOfModule(M) (operation)

Arguments: M – a path algebra module.
Returns: a basic version of the entered module M , that is, if M 'Mn1

1 ⊕·· ·⊕Mnt
t , where Mi is

indecomposable, then M1⊕·· ·⊕Mt is returned. At present, this function only work at best for finite
dimensional (quotients of a) path algebra over a finite field. If M is zero, then M is returned.

6.4.3 BlockDecompositionOfModule

. BlockDecompositionOfModule(M) (operation)
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Arguments: M – a path algebra module.
Returns: a set of modules {M1, ...,Mt} such that M'M1⊕·· ·⊕Mt , where each Mi is isomorphic

to Xni
i for some indecomposable module Xi and positive integer ni for all i, where Xi 6' X j for i 6= j.

6.4.4 BlockSplittingIdempotents

. BlockSplittingIdempotents(M) (operation)

Arguments: M – a path algebra module.
Returns: a set {e1, ...,et} of idempotents in the endomorphism of M such that M ' Ime1⊕·· ·⊕

Imet , where each Imei is isomorphic to Xni
i for some module Xi and positive integer ni for all i.

6.4.5 CommonDirectSummand

. CommonDirectSummand(M, N) (operation)

Arguments: M and N – two path algebra modules.
Returns: a list of four modules [X ,U ,X , V ], where X is one common non-zero direct summand

of M and N , the sum of X and U is M and the sum of X and V is N , if such a non-zero direct summand
exists. Otherwise it returns false.

The function checks if M and N are PathAlgebraMatModules over the same (quotient of a) path
algebra.

6.4.6 ComplexityOfModule

. ComplexityOfModule(M, n) (operation)

Arguments: M – path algebdra module, n – a positive integer.
Returns: an estimate of the complexity of the module M .
The function checks if the algebra over which the module M lives is known to have finite global

dimension. If so, it returns complexity zero. Otherwise it tries to estimate the complexity in the
following way. Recall that if a function f (x) is a polynomial in x, the degree of f (x) is given by
limn→∞

log | f (n)|
logn . So then this function computes an estimate of the complexity of M by approximating

the complexity by considering the limit limm→∞ log dim(P(M)(m))
logm where P(M)(m) is the m-th projective

in a minimal projective resolution of M at stage m. This limit is estimated by logdim(P(M)(n))
logn .

6.4.7 DecomposeModule

. DecomposeModule(M) (operation)

. DecomposeModuleWithInclusions(M) (operation)

Arguments: M – a path algebra module.
Returns: a list of indecomposable modules whose direct sum is isomorphic to the module M

in first variant. The second variant returns a list of inclusions into M with the sum of the images is
isomorphic to the module M .

Warning: the function is not properly tested and it at best only works properly over finite fields.
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6.4.8 DecomposeModuleProbabilistic

. DecomposeModuleProbabilistic(HomMM, M) (operation)

Arguments: HomMM , M – a list of basis elements of the Hom-space of the entered module and a
path algebra module.

Returns: with (hopefully high probability) a list of indecomposable modules whose direct sum
is isomorphic to the module M .

Given a module M over a finite dimensional quotient of a path algebra over a finite field, this
function tries to decompose the entered module M by choosing random elements in the endomorphism
ring of M which are non-nilpotent and non-invertible. Such elements splits the module in two direct
summands, and the procedure does this as long as it finds such elements. The output is not guaranteed
to be a list of indecomposable modules, but their direct sum is isomorphic to the entered module M .
This was constructed as joint effort by the participants at the workshop "Persistence, Representations,
and Computation", February 26th - March 2nd, 2018". This is an experimental function, so use with
caution.

6.4.9 DecomposeModuleViaCharPoly

. DecomposeModuleViaCharPoly(M) (operation)

Arguments: M – a path algebra module.
Returns: a list with high probability of indecomposable modules whose direct sum is isomorphic

to the module M .
Given a module M over a finite dimensional quotient of a path algebra over a finite field, this

function decomposes the entered module M by computing the endomorphism ring of M and choosing
random elements in it. This is an experimental function, so use with caution.

6.4.10 DecomposeModuleViaTop

. DecomposeModuleViaTop(M) (operation)

Arguments: M – a path algebra module.
Returns: a list of indecomposable modules whose direct sum is isomorphic to the module M .
Given a module M over a finite dimensional quotient of a path algebra over a finite field, this

function decomposes the entered module M by finding the image Σ of the endomorphism ring of M in
the endomorphism ring of the top of M , in Σ finds a complete set of primitive idempotents, lifts them
back to the endomorphism ring of M and decomposes M . This is an experimental function, so use with
caution.

6.4.11 DecomposeModuleWithMultiplicities

. DecomposeModuleWithMultiplicities(M) (operation)

Arguments: M – a path algebra module.
Returns: a list of length two, where the first entry is a list of all indecomposable non-isomorphic

direct summands of M and the second entry is the list of the multiplicities of these direct summand in
the module M .



QPA 66

Warning: the function is not properly tested and it at best only works properly over finite fields.

6.4.12 Dimension (for a PathAlgebraMatModule)

. Dimension(M) (operation)

Arguments: M – a path algebra module (PathAlgebraMatModule).
Returns: the dimension of the representation M .

6.4.13 DimensionVector

. DimensionVector(M) (attribute)

Arguments: M – a path algebra module (PathAlgebraMatModule).
Returns: the dimension vector of the representation M .

6.4.14 DirectSumOfQPAModules

. DirectSumOfQPAModules(L) (operation)

Arguments: L – a list of PathAlgebraMatModules over the same (quotient of a) path algebra.
Returns: the direct sum of the representations contained in the list L .
In addition three attributes are attached to the result, IsDirectSumOfModules (6.4.20),

DirectSumProjections (6.4.16) DirectSumInclusions (6.4.15).

6.4.15 DirectSumInclusions

. DirectSumInclusions(M) (attribute)

Arguments: M – a path algebra module (PathAlgebraMatModule).
Returns: the list of inclusions from the individual modules to their direct sum, when a direct sum

has been constructed using DirectSumOfQPAModules (6.4.14).

6.4.16 DirectSumProjections

. DirectSumProjections(M) (attribute)

Arguments: M – a path algebra module (PathAlgebraMatModule).
Returns: the list of projections from the direct sum to the individual modules used to construct

direct sum, when a direct sum has been constructed using DirectSumOfQPAModules (6.4.14).

6.4.17 FromIdentityToDoubleStarHomomorphism

. FromIdentityToDoubleStarHomomorphism(M) (attribute)

Arguments: M – a path algebra module (PathAlgebraMatModule).
Returns: the homomorphism from M to the double star of the module M .
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6.4.18 IntersectionOfSubmodules

. IntersectionOfSubmodules(list) (operation)

Arguments: f, g or list – two homomorphisms of PathAlgebraMatModules or a list of such.
Returns: the subrepresentation given by the intersection of all the submodules given by the

inclusions f and g or list .
The function checks if list is non-empty and if f : M → X and g : N → X or all the homo-

morphism in list have the same range and if they all are inclusions. If the function is given two
arguments f and g , then it returns [ f ′,g′,g′ ∗ f ], where f ′ : E→ N, g′ : E→M, and E is the pullback
of f and g . For a list of inclusions it returns a monomorphism from a module isomorphic to the
intersection to X .

6.4.19 IsDirectSummand

. IsDirectSummand(M, N) (operation)

Arguments: M, N – two path algebra modules (PathAlgebraMatModules).
Returns: true if M is isomorphic to a direct summand of N , otherwise false.
The function checks if M and N are PathAlgebraMatModules over the same (quotient of a) path

algebra.

6.4.20 IsDirectSumOfModules

. IsDirectSumOfModules(M) (filter)

Arguments: M – a path algebra module (PathAlgebraMatModule).
Returns: true if M is constructed via the command DirectSumOfQPAModules (6.4.14).
Using the example above.

Example
gap> N2 := DirectSumOfQPAModules([N,N]);
<[ 6, 4, 4 ]>
gap> proj := DirectSumProjections(N2);
[ <<[ 6, 4, 4 ]> ---> <[ 3, 2, 2 ]>>

, <<[ 6, 4, 4 ]> ---> <[ 3, 2, 2 ]>>
]

gap> inc := DirectSumInclusions(N2);
[ <<[ 3, 2, 2 ]> ---> <[ 6, 4, 4 ]>>

, <<[ 3, 2, 2 ]> ---> <[ 6, 4, 4 ]>>
]

6.4.21 IsExceptionalModule

. IsExceptionalModule(M) (property)

Arguments: M – a path algebra module (PathAlgebraMatModule).
Returns: true if M is an exceptional module, otherwise false, if the field, over which the algebra

M is defined over, is finite.
The module M is an exceptional module, if it is indecomposable and Ext1(M,M) = (0).
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6.4.22 IsIndecomposableModule

. IsIndecomposableModule(M) (property)

Arguments: M – a path algebra module (PathAlgebraMatModule).
Returns: true if M is an indecomposable module, if the field, over which the algebra M is defined

over, is finite.

6.4.23 IsInAdditiveClosure

. IsInAdditiveClosure(M, N) (operation)

Arguments: M, N – two path algebra modules (PathAlgebraMatModules).
Returns: true if M is in the additive closure of the module N , otherwise false.
The function checks if M and N are PathAlgebraMatModules over the same (quotient of a) path

algebra.

6.4.24 IsInjectiveModule

. IsInjectiveModule(M) (property)

Arguments: M – a path algebra module (PathAlgebraMatModule).
Returns: true if the representation M is injective.

6.4.25 IsomorphicModules

. IsomorphicModules(M, N) (operation)

Arguments: M, N – two path algebra modules (PathAlgebraMatModules).
Returns: true or false depending on whether M and N are isomorphic or not.
The function first checks if the modules M and N are modules over the same algebra, and returns

fail if not. The function returns true if the modules are isomorphic, otherwise false.

6.4.26 IsProjectiveModule

. IsProjectiveModule(M) (property)

Arguments: M – a path algebra module (PathAlgebraMatModule).
Returns: true if the representation M is projective.

6.4.27 IsRigidModule

. IsRigidModule(M) (property)

Arguments: M – a path algebra module (PathAlgebraMatModule).
Returns: true if M is a rigid module, otherwise false.
The module M is a rigid module, if Ext1(M,M) = (0).
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6.4.28 IsSemisimpleModule

. IsSemisimpleModule(M) (property)

Arguments: M – a path algebra module (PathAlgebraMatModule).
Returns: true if the representation M is semisimple.

6.4.29 IsSimpleQPAModule

. IsSimpleQPAModule(M) (property)

Arguments: M – a path algebra module (PathAlgebraMatModule).
Returns: true if the representation M is simple.

6.4.30 IsTauRigidModule

. IsTauRigidModule(M) (property)

Arguments: M – a path algebra module (PathAlgebraMatModule).
Returns: true if M is a τ-rigid module, otherwise false.
The module M is a τ-rigid module, if Hom(M,τM) = (0).

6.4.31 LoewyLength (for a PathAlgebraMatModule)

. LoewyLength(M) (attribute)

Arguments: M – a path algebra module (PathAlgebraMatModule).
Returns: the Loewy length of the module M .
The function checks that the module M is a module over a finite dimensional quotient of a path

algebra, and returns fail otherwise (This is not implemented yet).

6.4.32 IsZero

. IsZero(M) (property)

Arguments: M – a path algebra module (PathAlgebraMatModule).
Returns: true if M is the zero module, otherwise false.

6.4.33 MatricesOfPathAlgebraModule

. MatricesOfPathAlgebraModule(M) (operation)

Arguments: M – a path algebra module (PathAlgebraMatModule).
Returns: a list of the matrices that defines the representation M as a right module of the acting

path algebra.
The list of matrices that are returned are not the same identical to the matrices entered to define the

representation if there is zero vector space in at least one vertex. Then zero matrices of the appropriate
size are returned.
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6.4.34 MaximalCommonDirectSummand

. MaximalCommonDirectSummand(M, N) (operation)

Arguments: M, N – two path algebra modules (PathAlgebraMatModules).
Returns: a list of three modules [X ,U ,V ], where X is a maximal common non-zero direct sum-

mand of M and N , the sum of X and U is M and the sum of X and V is N , if such a non-zero maximal
direct summand exists. Otherwise it returns false.

The function checks if M and N are PathAlgebraMatModules over the same (quotient of a) path
algebra.

6.4.35 NumberOfNonIsoDirSummands

. NumberOfNonIsoDirSummands(M) (operation)

Arguments: M – a path algebra modules (PathAlgebraMatModules).
Returns: a list with two elements: (1) the number of non-isomorphic indecomposable direct

summands of the module M and (2) the dimensions of the simple blocks of the semisimple ring
End(M)/ radEnd(M).

6.4.36 MinimalGeneratingSetOfModule

. MinimalGeneratingSetOfModule(M) (attribute)

Arguments: M – a path algebra module (PathAlgebraMatModule).
Returns: a minimal generator set of the module M as a module of the path algebra it is defined

over.

6.4.37 RadicalOfModule

. RadicalOfModule(M) (operation)

Arguments: M – a path algebra module (PathAlgebraMatModule).
Returns: the radical of the module M .
This returns only the representation given by the radical of the module M . The operation

RadicalOfModuleInclusion (7.3.24) computes the inclusion of the radical of M into M . This func-
tion applies when the algebra over which M is defined is an admissible quotient of a path algebra.

6.4.38 RadicalSeries

. RadicalSeries(M) (operation)

Arguments: M – a path algebra module (PathAlgebraMatModule).
Returns: the radical series of the module M .
The function gives the radical series as a list of vectors [n_1,...,n_s], where the algebra has

s isomorphism classes of simple modules and the numbers give the multiplicity of each simple. The
first vector listed corresponds to the top layer, and so on.
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6.4.39 SocleSeries

. SocleSeries(M) (operation)

Arguments: M – a path algebra module (PathAlgebraMatModule).
Returns: the socle series of the module M .
The function gives the socle series as a list of vectors [n_1,...,n_s], where the algebra has s

isomorphism classes of simple modules and the numbers give the multiplicity of each simple. The last
vector listed corresponds to the socle layer, and so on backwards.

6.4.40 SocleOfModule

. SocleOfModule(M) (operation)

Arguments: M – a path algebra module (PathAlgebraMatModule).
Returns: the socle of the module M .
This operation only return the representation given by the socle of the module M . The inclusion

the socle of M into M can be computed using SocleOfModuleInclusion (7.3.26).

6.4.41 SubRepresentation

. SubRepresentation(M, gens) (operation)

Arguments: M – a path algebra module (PathAlgebraMatModule), gens – elements in M .
Returns: the submodule of the module M generated by the elements gens .
The function checks if gens are elements in M , and returns an error message otherwise.

The inclusion of the submodule generated by the elements gens into M can be computed using
SubRepresentationInclusion (7.3.27).

6.4.42 SumOfSubmodules

. SumOfSubmodules(list) (operation)

Arguments: f, g or list – two inclusions of PathAlgebraMatModules or a list of such.
Returns: the subrepresentation given by the sum of all the submodules given by the inclusions

f, g or list .
The function checks if list is non-empty and if f : M→ X and g : N→ X or all the homomor-

phism in list have the same range and if they all are inclusions. If the function is given two arguments
f and g , then it returns [h, f ′,g′], where h : M +N → X , f ′ : M→ M +N and g′ : N → M +N. For
a list of inclusions it returns a monomorphism from a module isomorphic to the sum of the subrepre-
sentations to X .

6.4.43 SupportModuleElement

. SupportModuleElement(m) (operation)
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Arguments: m – an element of a path algebra module.
Returns: the primitive idempotents v in the algebra over which the module containing the ele-

ment m is a module, such that m^v is non-zero.
The function checks if m is an element in a module over a (quotient of a) path algebra, and returns

fail otherwise.

6.4.44 TopOfModule

. TopOfModule(M) (operation)

Arguments: M or f – a path algebra module or a homomorphism thereof.
Returns: the top of the module M or the homomorphism induced on the top of the modules

associated to the homomorphism f .
This returns only the representation given by the top of the module M or the homomorphism

induced on the top of the modules associated to the entered homomorphism. The operation
TopOfModuleProjection (7.3.28) computes the projection of the module M onto the top of the mod-
ule M .

6.5 Special representations

Here we collect the predefined representations/modules over a finite dimensional quotient of a path
algebra.

6.5.1 BasisOfProjectives

. BasisOfProjectives(A) (attribute)

Arguments: A – a finite dimensional (quotient of a) path algebra.
Returns: a list of bases for all the indecomposable projective representations over A . The basis

for each indecomposable projective is given a list of elements in nontips in A .
The function checks if the algebra A is a finite dimensional (quotient of a) path algebra, and returns

an error message otherwise.

6.5.2 ElementInIndecProjective

. ElementInIndecProjective(A, m, s) (operation)

Arguments: A – a QuiverAlgebra, m – an element in an indecomposable projective representation,
s – an integer.

Returns: the element in the path algebra corresponding to m in the right ideal from which the
indecomposable projective representation is constructed.

6.5.3 IndecInjectiveModules

. IndecInjectiveModules(A) (attribute)
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Arguments: A – a finite dimensional (quotient of a) path algebra.
Returns: a list of all the non-isomorphic indecomposable injective representations over A .
The function checks if the algebra A is a finite dimensional (quotient of a) path algebra, and returns

an error message otherwise.

6.5.4 IndecProjectiveModules

. IndecProjectiveModules(A) (attribute)

Arguments: A – a finite dimensional (quotient of a) path algebra.
Returns: a list of all the non-isomorphic indecomposable projective representations over A .
The function checks if the algebra A is a finite dimensional (quotient of a) path algebra, and returns

an error message otherwise.

6.5.5 SimpleModules

. SimpleModules(A) (attribute)

Arguments: A – a finite dimensional (admissible quotient of a) path algebra.
Returns: a list of all the simple representations over A .
The function checks if the algebra A is a finite dimensional (admissible quotient of a) path algebra,

and returns an error message otherwise.

6.5.6 ZeroModule

. ZeroModule(A) (attribute)

Arguments: A – a finite dimensional (quotient of a) path algebra.
Returns: the zero representation over A .
The function checks if the algebra A is a finite dimensional (quotient of a) path algebra, and returns

an error message otherwise.

6.6 Functors on representations

6.6.1 DualOfModule

. DualOfModule(M) (attribute)

Arguments: M – a PathAlgebraMatModule.
Returns: the dual of M over the opposite algebra Aop, if M is a module over A.

6.6.2 DualOfModuleHomomorphism

. DualOfModuleHomomorphism(f) (attribute)

Arguments: f – a map between two representations M and N over a path algebra A.
Returns: the dual of this map over the opposite path algebra A^\op .
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6.6.3 DTr

. DTr(M[, n]) (operation)

. DualOfTranspose(M[, n]) (operation)

Arguments: M – a path algebra module, (optional) n – an integer.
Returns: the dual of the transpose of M when called with only one argument, while it returns

the dual of the transpose applied to M n times otherwise. If n is negative, then powers of TrD are
computed. DualOfTranspose is a synonym for DTr.

6.6.4 DTr

. DTr(f[, n]) (operation)

Arguments: f – a path algebra module homomorphism and n – an integer.
Returns: the n -th power of the dual of the transpose of the homomorphism f .

6.6.5 NakayamaFunctorOfModule

. NakayamaFunctorOfModule(M) (attribute)

Arguments: M – a PathAlgebraMatModule.
Returns: the module HomK(HomA(M,A),K) over A, when M is a module over a K-algebra A.

6.6.6 NakayamaFunctorOfModuleHomomorphism

. NakayamaFunctorOfModuleHomomorphism(f) (attribute)

Arguments: f – a map between two modules M and N over a path algebra A.
Returns: the homomorphism induced by f : M→ N from the module HomK(HomA(M,A),K) to

HomK(HomA(N,A),K), when f is a module homomorphism over a K-algebra A .

6.6.7 RestrictionViaAlgebraHomomorphism

. RestrictionViaAlgebraHomomorphism(f, M) (operation)

Arguments: f – an IsAlgebraHomomorphism, M – an IsPathAlgebraMatModule.
Returns: Given an algebra homomorphism f : A ↪→ B and a module M over B, this function

returns M as a module over A.

6.6.8 RestrictionViaAlgebraHomomorphismMap

. RestrictionViaAlgebraHomomorphismMap(f, h) (operation)

Arguments: f – an IsAlgebraHomomorphism, h – an IsPathAlgebraMatModuleHomomorphism.
Returns: Given an algebra homomorphism f : A ↪→ B and a homomorphism of modules h from

M to N over B, this function returns the induced homomorphism induced by h as a homomorphism
over A.
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6.6.9 StarOfModule

. StarOfModule(M) (attribute)

Arguments: M – a PathAlgebraMatModule.
Returns: the module HomA(M,A) over the opposite of A, when M is a module over an algebra A.

6.6.10 StarOfModuleHomomorphism

. StarOfModuleHomomorphism(f) (attribute)

Arguments: f – a map between two modules M and N over a path algebra A.
Returns: the homomorphism induced by f : M → N from the module HomA(N,A) to

HomA(M,A), when f is a module homomorphism over an algebra A .

6.6.11 TensorProductOfModules

. TensorProductOfModules(M, N) (operation)

Arguments: M , N – two path algebra modules
Returns: the tensor product M⊗A N as a vector space and a function M×N→M⊗A N, given two

representations M and N , where M is a right module over A and N is a right module over the opposite
of A.

6.6.12 TrD

. TrD(M[, n]) (operation)

. TransposeOfDual(M[, n]) (operation)

Arguments: M – a path algebra module, (optional) n – an integer.
Returns: the transpose of the dual of M when called with only one argument, while it returns

the transpose of the dual applied to M n times otherwise. If n is negative, then powers of TrD are
computed. TransposeOfDual is a synonym for TrD.

6.6.13 TrD

. TrD(f[, n]) (operation)

Arguments: f – a path algebra module homomorphism, n – an integer.
Returns: the n -th power of the transpose of the dual of the homomorphism f .

6.6.14 TransposeOfModule

. TransposeOfModule(M) (attribute)

Arguments: M – a path algebra module.
Returns: the transpose of the module M .
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6.6.15 TransposeOfModuleHomomorphism

. TransposeOfModuleHomomorphism(f) (attribute)

Arguments: f – a path algebra module homomorphism.
Returns: the transpose of the module homomorphism f .

6.7 Vertex projective modules and submodules thereof

In general, if R is a ring and e is an idempotent of R, then eR is a projective module of R. Then we
can form a direct sum of these projective modules together to form larger projective module. One can
construct more general modules by providing a vertex projective presentation . In this case,
M is the cokernel as given by the following exact sequence: ⊕r

j=1w( j)R→⊕g
i=1v(i)R→M→ 0 for

some map between⊕r
j=1w( j)R and⊕g

i=1v(i)R. The maps w and v map the integers to some idempotent
in R.

6.7.1 RightProjectiveModule

. RightProjectiveModule(A, verts) (function)

Arguments: A – a (quotient of a) path algebra, verts – a list of vertices.
Returns: the right projective module over A which is the direct sum of projective modules of the

form vA where the vertices are taken from verts .
The module created is in the category IsPathAlgebraModule. In this implementation the algebra

can be a quotient of a path algebra. So if the list was [v,w] then the module created will be the direct
sum vA⊕wA, in that order. Elements of the modules are vectors of algebra elements, and in each
component, each path begins with the vertex in that position in the list of vertices. Right projective
modules are implementated as algebra modules (see Reference: Representations of Algebras) and
all operations for algebra modules are applicable to right projective modules. In particular, one can
construct submodules using SubAlgebraModule (Reference: SubAlgebraModule).

Here we create the right projective module P = vA⊕ vA⊕wA.
Example

gap> F := GF(11);
GF(11)
gap> Q := Quiver(["v","w", "x"],[["v","w","a"],["v","w","b"],
> ["w","x","c"]]);
<quiver with 3 vertices and 3 arrows>
gap> A := PathAlgebra(F,Q);
<GF(11)[<quiver with 3 vertices and 3 arrows>]>
gap> P := RightProjectiveModule(A,[A.v,A.v,A.w]);
<right-module over <GF(11)[<quiver with 3 vertices and 3 arrows>]>>
gap> Dimension(P);
12

6.7.2 CompletelyReduceGroebnerBasisForModule

. CompletelyReduceGroebnerBasisForModule(GB) (function)
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Arguments: GB – an right Groebner basis for a (submodule of a) vertex projective module over a
path algebra.

Returns: a completely reduced right Groebner basis from the entered Groebner basis GB .
This function takes as input an right Groebner basis for a vertex projective module or a submodule

thereof, an constructs completely reduced right Groebner from it.

6.7.3 IsLeftDivisible

. IsLeftDivisible(x, y) (property)

Arguments: x, y – two path algebra vectors.
Returns: true if the tip of y left divides the tip of x . False otherwise.
Given two PathAlgebraVectors x and y , then y is said to left divide x , if the tip of x and the tip

of y occur in the same coordinate, and the tipmonomial of the tip of y leftdivides the tipmonomial of
the tip of x .

6.7.4 IsPathAlgebraModule

. IsPathAlgebraModule(P) (property)

Arguments: P – any object.
Returns: true if the argument P is in the category IsPathAlgebraModule.

6.7.5 IsPathAlgebraVector

. IsPathAlgebraVector(v) (property)

Arguments: v – a path algebra vector.
Returns: true if v has been constructed as a PathAlgebraVector. Otherwise it returns false.

6.7.6 LeadingCoefficient (of PathAlgebraVector)

. LeadingCoefficient (of PathAlgebraVector)(x) (operation)

Arguments: x – an element in a PathAlgebraModule.
Returns: the coefficient of the leading term/tip of a PathAlgebraVector.
The tip of the element x can by found by applying the command LeadingTerm (of

PathAlgebraVector) (6.7.9).

6.7.7 LeadingComponent

. LeadingComponent(v) (operation)

Arguments: v – a path algebra vector.
Returns: v[pos], where pos is the coordinate for the tip of the vector, whenever v is non-zero.

That is, it returns the coordinate of the vector v where the tip occors. It returns zero otherwise.
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6.7.8 LeadingPosition

. LeadingPosition(v) (operation)

Arguments: v – a path algebra vector.
Returns: the coordinate in which the tip of the vector occurs.

6.7.9 LeadingTerm (of PathAlgebraVector)

. LeadingTerm (of PathAlgebraVector)(x) (operation)

Arguments: x – an element in a PathAlgebraModule.
Returns: the leading term/tip of a PathAlgebraVector.
The tip of the element x is computed using the following order: the tip is computed for each

coordinate, if the largest of these occur as a tip of several coordinates, then the coordinate with the
smallest index from 1 to the length of vector is chosen. The position of the tip was computed when
the PathAlgebraVector was created.

6.7.10 LeftDivision

. LeftDivision(x, y) (operation)

Arguments: x, y – two path algebra vectors.
Returns: a scalar multiple of a path, say λ such that the tips of y∗λ and x are the same, if the tip

of y left divides the tip of x . False otherwise.
In the following example, we create two elements in P, perform some elementwise operations,

and then construct a submodule using the two elements as generators.
Example

gap> p1 := Vectorize(P,[A.b*A.c,A.a*A.c,A.c]);
[ (Z(11)^0)*b*c, (Z(11)^0)*a*c, (Z(11)^0)*c ]
gap> p2 := Vectorize(P,[A.a,A.b,A.w]);
[ (Z(11)^0)*a, (Z(11)^0)*b, (Z(11)^0)*w ]
gap> 2*p1 + p2;
[ (Z(11)^0)*a+(Z(11))*b*c, (Z(11)^0)*b+(Z(11))*a*c,

(Z(11)^0)*w+(Z(11))*c ]
gap> S := SubAlgebraModule(P,[p1,p2]);
<right-module over <GF(11)[<quiver with 3 vertices and 3 arrows>]>>
gap> Dimension(S);
3

6.7.11 ^ (a PathAlgebraModule element and a PathAlgebra element)

. ^(m, a) (operation)

Arguments: m – an element of a path algebra module, a – an element of a path algebra.
Returns: the element m multiplied with a .
This action is defined by multiplying each component in m by a on the right.
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Example
gap> p2^(A.c - A.w);
[ (Z(11)^5)*a+(Z(11)^0)*a*c, (Z(11)^5)*b+(Z(11)^0)*b*c,

(Z(11)^5)*w+(Z(11)^0)*c ]

6.7.12 < (for two elements in a PathAlgebraModule)

. <(m1, m2) (operation)

Arguments: m1, m2 – two elements of a PathAlgebraModule.
Returns: ‘true’ if m1 is less than m2 and false otherwise.
Elements are compared componentwise from left to right using the ordering of the underlying

algebra. The element m1 is less than m2 if the first time components are not equal, the component of
m1 is less than the corresponding component of m2 .

Example
gap> p1 < p2;
false

6.7.13 /

. /(M, N) (operation)

Arguments: M, N – two finite dimensional PathAlgebraModules.
Returns: the factor module M/N.
This module is again a right algebra module, and all applicable methods and operations are avail-

able for the resulting factor module. Furthermore, the resulting module is a vector space, so operations
for computing bases and dimensions are also available.

Example
gap> PS := P/S;
<9-dimensional right-module over <GF(11)[<quiver with 3 vertices and
3 arrows>]>>
gap> Basis(PS);
Basis( <9-dimensional right-module over <GF(11)[<quiver with
3 vertices and 3 arrows>]>>,
[ [ [ <zero> of ..., (Z(11)^0)*v, <zero> of ... ] ],

[ [ (Z(11)^0)*v, <zero> of ..., <zero> of ... ] ],
[ [ <zero> of ..., <zero> of ..., (Z(11)^0)*w ] ],
[ [ <zero> of ..., (Z(11)^0)*a, <zero> of ... ] ],
[ [ (Z(11)^0)*a, <zero> of ..., <zero> of ... ] ],
[ [ (Z(11)^0)*b, <zero> of ..., <zero> of ... ] ],
[ [ <zero> of ..., <zero> of ..., (Z(11)^0)*c ] ],
[ [ <zero> of ..., (Z(11)^0)*a*c, <zero> of ... ] ],
[ [ (Z(11)^0)*a*c, <zero> of ..., <zero> of ... ] ] ] )

6.7.14 PathAlgebraVector

. PathAlgebraVector(fam, components) (operation)
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Arguments: fam – a PathAlgebraVectorFamily, components – a homogeneous list of elements.
Returns: a PathAlgebraVector in the PathAlgebraVectorFamily fam with the components of the

vector being equal to components .
This function is typically used when constructing elements of a module constructed by the com-

mand RightProjectiveModule. If P is constructed as say, P := RightProjectiveModule(KQ,
[KQ.v1, KQ.v1, KQ.v2]), then ExtRepOfObj(p), where p is an element if P is a
PathAlgebraVector. The tip is computed using the following ordering: the tip is computed for
each coordinate, if the largest of these occur as a tip of several coordinates, then the coordinate with
the smallest index from 1 to the length of vector is chosen.

6.7.15 ProjectivePathAlgebraPresentation

. ProjectivePathAlgebraPresentation(M) (operation)

Arguments: M – a finite dimensional module over a (quotient of a) path algebra.
Returns: a projective presentation of the entered module M over a (qoutient of a) path algebra A.

The projective presentation, or resolution is over the path algebra form which A was constructed.
This function takes as input a PathAlgebraMatModule and constructs a projetive presentation of

this module over the path algebra over which it is defined, ie. a projetive resolution of length 1. It
returns a list of five elements: (1) a projective module P over the path algebra, which modulo the
relations induced the projective cover of M , (2) a submodule U of P such that P/U is isomorphic to
M , (3) module generators of P, (4) module generators for U which forms a completely reduced right
Groebner basis for U , and (5) a matrix with enteries in the path algebra which gives the map from U
to P, if U were considered a direct sum of vertex projective modules over the path algebra.

6.7.16 RightGroebnerBasisOfModule

. RightGroebnerBasisOfModule(M) (attribute)

Arguments: M – a PathAlgebraModule.
Returns: a right Groebner basis for the module M .
It checks if the acting algebra on the module M is a path algebra, and it returns an er-

ror message otherwise. The elements in the right Groebner basis that is constructed, can be
retrieved by the command BasisVectors. The underlying module is likewise returned by
the command UnderlyingModule. The output of the function is satisfying the filter/category
IsRightPathAlgebraModuleGroebnerBasis.

6.7.17 TargetVertex

. TargetVertex(v) (operation)

Arguments: v – a PathAlgebraVector.
Returns: a vertex w such that v∗w = v, if such a vertex exists, and fail otherwise.
Given a PathAlgebraVector v , if v is right uniform, this function finds the vertex w such that

v ∗w = v whenever v is non-zero, and returns the zero path otherwise. If v is not right uniform it
returns fail.
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6.7.18 UniformGeneratorsOfModule

. UniformGeneratorsOfModule(M) (attribute)

Arguments: M – a PathAlgebraModule.
Returns: a set of right uniform generators of the mdoule M . If M is the zero module, then it returns

an empty list.

6.7.19 Vectorize

. Vectorize(M, components) (function)

Arguments: M – a module over a path algebra, components – a list of elements of M .
Returns: a vector in M from a list of path algebra elements components , which defines the

components in the resulting vector.
The returned vector is normalized, so the vector’s components may not match the input compo-

nents.



Chapter 7

Homomorphisms of Right Modules over
Path Algebras

This chapter describes the categories, representations, attributes, and operations on homomorphisms
between representations of quivers.

Given two homorphisms f : L→ M and g : M → N, then the composition is written f ∗ g. The
elements in the modules or the representations of a quiver are row vectors. Therefore the homomor-
phisms between two modules are acting on these row vectors, that is, if mi is in M[i] and gi : M[i]→N[i]
represents the linear map, then the value of g applied to mi is the matrix product mi ∗gi.

The example used throughout this chapter is the following.
Example

gap> Q := Quiver(3,[[1,2,"a"],[1,2,"b"],[2,2,"c"],[2,3,"d"],[3,1,"e"]]);;
gap> KQ := PathAlgebra(Rationals, Q);;
gap> AssignGeneratorVariables(KQ);;
gap> rels := [d*e,c^2,a*c*d-b*d,e*a];;
gap> A := KQ/rels;;
gap> mat :=[["a",[[1,2],[0,3],[1,5]]],["b",[[2,0],[3,0],[5,0]]],
> ["c",[[0,0],[1,0]]],["d",[[1,2],[0,1]]],["e",[[0,0,0],[0,0,0]]]];;
gap> N := RightModuleOverPathAlgebra(A,mat);;

7.1 Categories and representation of homomorphisms

7.1.1 IsPathAlgebraModuleHomomorphism

. IsPathAlgebraModuleHomomorphism(f) (filter)

Arguments: f - any object in GAP.
Returns: true or false depending on if f belongs to the categories

IsPathAlgebraModuleHomomorphism.
This defines the category IsPathAlgebraModuleHomomorphism.

7.1.2 RightModuleHomOverAlgebra

. RightModuleHomOverAlgebra(M, N, mats) (operation)

82
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Arguments: M , N - two modules over the same (quotient of a) path algebra, mats - a list of matri-
ces, one for each vertex in the quiver of the path algebra.

Returns: a homomorphism in the category IsPathAlgebraModuleHomomorphism from the
module M to the module N given by the matrices mats .

The arguments M and N are two modules over the same algebra (this is checked), and
mats is a list of matrices mats[i], where mats[i] represents the linear map from M[i]
to N[i] with i running through all the vertices in the same order as when the underlying
quiver was created. If both DimensionVector(M)[i] and DimensionVector(N)[i] are non-
zero, then mats[i] is a DimensionVector(M)[i] by DimensionVector(N)[i] matrix. If
DimensionVector(M)[i] is zero and DimensionVector(N)[i] is non-zero, then mats[i] must
be the zero 1 by DimensionVector(N)[i] matrix. Similarly for the other way around. If both
DimensionVector(M)[i] and DimensionVector(N)[i] are zero, then mats[i] must be the 1 by
1 zero matrix. The function checks if mats is a homomorphism from the module M to the module N
by checking that the matrices given in mats have the correct size and satisfy the appropriate commu-
tativity conditions with the matrices in the modules given by M and N . The source (or domain) and the
range (or codomain) of the homomorphism constructed can by obtained again by Range (7.2.22) and
by Source (7.2.24), respectively.

Example
gap> L := RightModuleOverPathAlgebra(A,[["a",[0,1]],["b",[0,1]],
> ["c",[[0]]],["d",[[1]]],["e",[1,0]]]);
<[ 0, 1, 1 ]>
gap> DimensionVector(L);
[ 0, 1, 1 ]
gap> f := RightModuleHomOverAlgebra(L,N,[[[0,0,0]], [[1,0]],
> [[1,2]]]);
<<[ 0, 1, 1 ]> ---> <[ 3, 2, 2 ]>>

gap> IsPathAlgebraMatModuleHomomorphism(f);
true

7.2 Generalities of homomorphisms

7.2.1 \= (maps)

. \= (maps)(f, g) (operation)

Arguments: f , g - two homomorphisms between two modules.
Returns: true, if Source(f) = Source(g), Range(f) = Range(g), and the matrices defining

the maps f and g coincide.

7.2.2 \+ (maps)

. \+ (maps)(f, g) (operation)

Arguments: f , g - two homomorphisms between two modules.
Returns: the sum f+g of the maps f and g .
The function checks if the maps have the same source and the same range, and returns an error

message otherwise.
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7.2.3 \* (maps)

. \* (maps)(f, g) (operation)

Arguments: f , g - two homomorphisms between two modules, or one scalar and one homomor-
phism between modules.

Returns: the composition fg of the maps f and g , if the input are maps between representations
of the same quivers. If f or g is a scalar, it returns the natural action of scalars on the maps between
representations.

The function checks if the maps are composable, in the first case and in the second case it checks
if the scalar is in the correct field, and returns an error message otherwise.

7.2.4 CoKernelOfWhat

. CoKernelOfWhat(f) (attribute)

Arguments: f - a homomorphism between two modules.
Returns: a homomorphism g , if f has been computed as the cokernel of the homomorphism g .

7.2.5 IdentityMapping

. IdentityMapping(M) (operation)

Arguments: M - a module.
Returns: the identity map between M and M .

7.2.6 ImageElm

. ImageElm(f, elem) (operation)

Arguments: f - a homomorphism between two modules, elem - an element in the source of f .
Returns: the image of the element elem in the source (or domain) of the homomorphism f .
The function checks if elem is an element in the source of f , and it returns an error message

otherwise.

7.2.7 ImagesSet

. ImagesSet(f, elts) (operation)

Arguments: f - a homomorphism between two modules, elts - an element in the source of f , or
the source of f .

Returns: the non-zero images of a set of elements elts in the source of the homomorphism f ,
or if elts is the source of f , it returns a basis of the image.

The function checks if the set of elements elts consists of elements in the source of f , and it
returns an error message otherwise.

Example
gap> B := BasisVectors(Basis(N));
[ [ [ 1, 0, 0 ], [ 0, 0 ], [ 0, 0 ] ],
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[ [ 0, 1, 0 ], [ 0, 0 ], [ 0, 0 ] ],
[ [ 0, 0, 1 ], [ 0, 0 ], [ 0, 0 ] ],
[ [ 0, 0, 0 ], [ 1, 0 ], [ 0, 0 ] ],
[ [ 0, 0, 0 ], [ 0, 1 ], [ 0, 0 ] ],
[ [ 0, 0, 0 ], [ 0, 0 ], [ 1, 0 ] ],
[ [ 0, 0, 0 ], [ 0, 0 ], [ 0, 1 ] ] ]

gap> PreImagesRepresentative(f,B[4]);
[ [ 0 ], [ 1 ], [ 0 ] ]
gap> PreImagesRepresentative(f,B[5]);
fail
gap> BL := BasisVectors(Basis(L));
[ [ [ 0 ], [ 1 ], [ 0 ] ], [ [ 0 ], [ 0 ], [ 1 ] ] ]
gap> ImageElm(f,BL[1]);
[ [ 0, 0, 0 ], [ 1, 0 ], [ 0, 0 ] ]
gap> ImagesSet(f,L);
[ [ [ 0, 0, 0 ], [ 1, 0 ], [ 0, 0 ] ],

[ [ 0, 0, 0 ], [ 0, 0 ], [ 1, 2 ] ] ]
gap> ImagesSet(f,BL);
[ [ [ 0, 0, 0 ], [ 1, 0 ], [ 0, 0 ] ],

[ [ 0, 0, 0 ], [ 0, 0 ], [ 1, 2 ] ] ]
gap> z := Zero(f);;
gap> f = z;
false
gap> Range(f) = Range(z);
true
gap> y := ZeroMapping(L,N);;
gap> y = z;
true
gap> id := IdentityMapping(N);;
gap> f*id;;
gap> #This causes an error!
gap> id*f;
Error, codomain of the first argument is not equal to the domain of th\
e second argument, called from
<function>( <arguments> ) called from read-eval-loop
Entering break read-eval-print loop ...
you can ’quit;’ to quit to outer loop, or
you can ’return;’ to continue
brk> quit;;
gap> 2*f + z;
<<[ 0, 1, 1 ]> ---> <[ 3, 2, 2 ]>>

7.2.8 ImageOfWhat

. ImageOfWhat(f) (attribute)

Arguments: f - a homomorphism between two modules.
Returns: a homomorphism g , if f has been computed as the image projection or the image

inclusion of the homomorphism g .
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7.2.9 IsInjective

. IsInjective(f) (property)

Arguments: f - a homomorphism between two modules.
Returns: true if the homomorphism f is one-to-one.

7.2.10 IsIsomorphism

. IsIsomorphism(f) (operation)

Arguments: f - a homomorphism between two modules.
Returns: true if the homomorphism f is an isomorphism.

7.2.11 IsLeftMinimal

. IsLeftMinimal(f) (property)

Arguments: f - a homomorphism between two modules.
Returns: true if the homomorphism f is left minimal.

7.2.12 IsRightMinimal

. IsRightMinimal(f) (property)

Arguments: f - a homomorphism between two modules.
Returns: true if the homomorphism f is right minimal.

Example
gap> L := RightModuleOverPathAlgebra(A,[["a",[0,1]],["b",[0,1]],
> ["c",[[0]]],["d",[[1]]],["e",[1,0]]]);;
gap> f := RightModuleHomOverAlgebra(L,N,[[[0,0,0]], [[1,0]],
> [[1,2]]]);
<<[ 0, 1, 1 ]> ---> <[ 3, 2, 2 ]>>

gap> g := CoKernelProjection(f);
<<[ 3, 2, 2 ]> ---> <[ 3, 1, 1 ]>>

gap> CoKernelOfWhat(g) = f;
true
gap> h := ImageProjection(f);
<<[ 0, 1, 1 ]> ---> <[ 0, 1, 1 ]>>

gap> ImageOfWhat(h) = f;
true
gap> IsInjective(f); IsSurjective(f); IsIsomorphism(f);
true
false
false
gap> IsIsomorphism(h);
true
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7.2.13 IsSplitEpimorphism

. IsSplitEpimorphism(f) (property)

Arguments: f - a homomorphism between two modules.
Returns: true if the homomorphism f is a splittable epimorphism, otherwise false.

7.2.14 IsSplitMonomorphism

. IsSplitMonomorphism(f) (property)

Arguments: f - a homomorphism between two modules.
Returns: true if the homomorphism f is a splittable monomorphism, otherwise false.

Example
gap> S := SimpleModules(A)[1];;
gap> H := HomOverAlgebra(N,S);;
gap> IsSplitMonomorphism(H[1]);
false
gap> IsSplitEpimorphism(H[1]);
true

7.2.15 IsSurjective

. IsSurjective(f) (property)

Arguments: f - a homomorphism between two modules.
Returns: true if the homomorphism f is onto.

7.2.16 IsZero

. IsZero(f) (property)

Arguments: f - a homomorphism between two modules.
Returns: true if the homomorphism f is a zero homomorphism.

7.2.17 KernelOfWhat

. KernelOfWhat(f) (attribute)

Arguments: f - a homomorphism between two modules.
Returns: a homomorphism g , if f has been computed as the kernel of the homomorphism g .

Example
gap> L := RightModuleOverPathAlgebra(A,[["a",[0,1]],["b",[0,1]],
> ["c",[[0]]],["d",[[1]]],["e",[1,0]]]);
<[ 0, 1, 1 ]>
gap> f := RightModuleHomOverAlgebra(L,N,[[[0,0,0]], [[1,0]],
> [[1,2]]]);;
gap> IsZero(0*f);
true
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gap> g := KernelInclusion(f);
<<[ 0, 0, 0 ]> ---> <[ 0, 1, 1 ]>>

gap> KnownAttributesOfObject(g);
[ "Range", "Source", "PathAlgebraOfMatModuleMap", "KernelOfWhat" ]
gap> KernelOfWhat(g) = f;
true

7.2.18 LeftInverseOfHomomorphism

. LeftInverseOfHomomorphism(f) (attribute)

Arguments: f - a homomorphism between two modules.
Returns: false if the homomorphism f is not a splittable epimorphism, otherwise it returns a

splitting of the split epimorphism f .

7.2.19 MatricesOfPathAlgebraMatModuleHomomorphism

. MatricesOfPathAlgebraMatModuleHomomorphism(f) (operation)

Arguments: f - a homomorphism between two modules.
Returns: the matrices defining the homomorphism f .

Example
gap> MatricesOfPathAlgebraMatModuleHomomorphism(f);
[ [ [ 0, 0, 0 ] ], [ [ 1, 0 ] ], [ [ 1, 2 ] ] ]
gap> Range(f);
<[ 3, 2, 2 ]>
gap> Source(f);
<[ 0, 1, 1 ]>
gap> Source(f) = L;
true

7.2.20 PathAlgebraOfMatModuleMap

. PathAlgebraOfMatModuleMap(f) (attribute)

Arguments: f – a homomorphism between two path algebra modules (PathAlgebraMatModule).
Returns: the algebra over which the range and the source of the homomorphism f is defined.

7.2.21 PreImagesRepresentative

. PreImagesRepresentative(f, elem) (operation)

Arguments: f - a homomorphism between two modules, elem - an element in the range of f .
Returns: a preimage of the element elem in the range (or codomain) the homomorphism f if a

preimage exists, otherwise it returns fail.
The function checks if elem is an element in the range of f and returns an error message if not.
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7.2.22 Range

. Range(f) (attribute)

Arguments: f - a homomorphism between two modules.
Returns: the range (or codomain) the homomorphism f .

7.2.23 RightInverseOfHomomorphism

. RightInverseOfHomomorphism(f) (attribute)

Arguments: f - a homomorphism between two modules.
Returns: false if the homomorphism f is not a splittable monomorphism, otherwise it returns

a splitting of the split monomorphism f .

7.2.24 Source

. Source(f) (attribute)

Arguments: f - a homomorphism between two modules.
Returns: the source (or domain) the homomorphism f .

7.2.25 Zero

. Zero(f) (operation)

Arguments: f - a homomorphism between two modules.
Returns: the zero map between Source(f) and Range(f).

7.2.26 ZeroMapping

. ZeroMapping(M, N) (operation)

Arguments: M , N - two modules.
Returns: the zero map between M and N .

7.2.27 HomomorphismFromImages

. HomomorphismFromImages(M, N, genImages) (operation)

Arguments: M , N – two modules, genImages – a list.
Returns: A map f between M and N , given by genImages .
Let B be the basis BasisVectors( Basis( M ) ) of M . Then the number of elements of

genImages should be equal to the number of elements of B, and genImages[i] is an element of
N and the image of B[i] under f. The method fails if f is not a homomorphism, or if B[i] and
genImages[i] are supported in different vertices.
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7.3 Homomorphisms and modules constructed from homomorphisms
and modules

7.3.1 AllIndecModulesOfLengthAtMost

. AllIndecModulesOfLengthAtMost(A, n) (operation)

Arguments: A, n - an algebra over a finite field, an integer.
Returns: all the different indecomposable modules over the algebra A of length at most n .
This function is only implemented for algebras over a finite field.

7.3.2 AllModulesOfLengthAtMost

. AllModulesOfLengthAtMost(A, n) (operation)

Arguments: A, n - an algebra over a finite field, an integer.
Returns: all the different modules over the algebra A of length at most n .
This function is only implemented for algebras over a finite field.

7.3.3 AllSimpleSubmodulesOfModule

. AllSimpleSubmodulesOfModule(M) (operation)

Arguments: M - a module.
Returns: all the different simple submodules of a module given as inclusions into the module M .
This function is only implemented for algebras over a finite field.

7.3.4 AllSubmodulesOfModule

. AllSubmodulesOfModule(M) (operation)

Arguments: M - a module.
Returns: all the different submodules of a module given as inclusions into the module M .
This function is only implemented for algebras over a finite field.

7.3.5 CoKernel

. CoKernel(f) (attribute)

Arguments: f - a homomorphism between two modules.
Returns: the cokernel of a homomorphism f between two modules.
This function returns the cokernel of the homomorphism f as a module.

7.3.6 CoKernelProjection

. CoKernelProjection(f) (attribute)
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Arguments: f - a homomorphism between two modules.
Returns: the cokernel of a homomorphism f between two modules.
This function returns the cokernel of the homomorphism f as the projection homomorphism from

the range of the homomorphism f to the cokernel of the homomorphism f .

7.3.7 EndModuloProjOverAlgebra

. EndModuloProjOverAlgebra(M) (operation)

Arguments: M - a module.
Returns: the natural homomorphism from the endomorphism ring of M to the endomorphism

ring of M modulo the ideal generated by those endomorphisms of M which factor through a projective
module.

The operation returns an error message if the zero module is entered as an argument.

7.3.8 EndOfModuleAsQuiverAlgebra

. EndOfModuleAsQuiverAlgebra(M) (operation)

Arguments: M - a PathAlgebraMatModule.
Returns: a list of three elements, (i) the endomorphism ring of M , (ii) the adjacency matrix of the

quiver of the endomorphism ring and (iii) the endomorphism ring as a quiver algebra.
Suppose M is a module over a quiver algebra over a field K. The function checks if the endo-

morphism ring of M is K-elementary (not necessary for it to be a quiver algebra, but this is a TODO
improvement), and returns error message otherwise.

7.3.9 EndOverAlgebra

. EndOverAlgebra(M) (attribute)

Arguments: M - a module.
Returns: the endomorphism ring of M as a subalgebra of the direct sum of the full matrix rings

of DimensionVector(M)[i] x DimensionVector(M)[i], where i runs over all vertices where
DimensionVector(M)[i] is non-zero.

The endomorphism is an algebra with one, and one can apply for example RadicalOfAlgebra to
find the radical of the endomorphism ring.

7.3.10 FromEndMToHomMM

. FromEndMToHomMM(f) (operation)

Arguments: f – an element in EndOverAlgebra(M).
Returns: the homomorphism from M to M corresponding to the element f in the endomorphism

ring EndOverAlgebra(M) of M .
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7.3.11 FromHomMMToEndM

. FromHomMMToEndM(f) (operation)

Arguments: f – an element in HomOverAlgebra(M,M).
Returns: the element f in the endomorphism ring EndOverAlgebra(M) of M corresponding to

the the homomorphism from M to M given by f .

7.3.12 HomFactoringThroughProjOverAlgebra

. HomFactoringThroughProjOverAlgebra(M, N) (operation)

Arguments: M , N - two modules.
Returns: a basis for the vector space of homomorphisms from M to N which factors through a

projective module.
The function checks if M and N are modules over the same algebra, and returns an error message

otherwise.

7.3.13 HomFromProjective

. HomFromProjective(m, M) (operation)

Arguments: m , M - an element and a module.
Returns: the homomorphism from the indecomposable projective module defined by the support

of the element m to the module M .
The function checks if m is an elememt in M and if the element m is supported in only one vertex.

Otherwise it returns fail.

7.3.14 HomOverAlgebra

. HomOverAlgebra(M, N) (operation)

Arguments: M , N - two modules.
Returns: a basis for the vector space of homomorphisms from M to N .
The function checks if M and N are modules over the same algebra, and returns an error message

and fail otherwise.

7.3.15 Image

. Image(f) (attribute)

Arguments: f - a homomorphism between two modules.
Returns: the image of a homomorphism f as a module.

7.3.16 ImageInclusion

. ImageInclusion(f) (attribute)
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Arguments: f - a homomorphism between two modules.
Returns: the inclusion of the image of a homomorphism f into the range of f .

7.3.17 ImageProjection

. ImageProjection(f) (attribute)

Arguments: f - a homomorphism between two modules.
Returns: the projection from the source of f to the image of the homomorphism f .

7.3.18 ImageProjectionInclusion

. ImageProjectionInclusion(f) (attribute)

Arguments: f - a homomorphism between two modules.
Returns: both the projection from the source of f to the image of the homomorphism f and the

inclusion of the image of a homomorphism f into the range of f as a list of two elements (first the
projection and then the inclusion).

7.3.19 IsomorphismOfModules

. IsomorphismOfModules(M, N) (operation)

Arguments: M, N - two PathAlgebraMatModules.
Returns: false if M and N are two non-isomorphic modules, otherwise it returns an isomorphism

from M to N .
The function checks if M and N are modules over the same algebra, and returns an error message

otherwise.

7.3.20 Kernel

. Kernel(f) (attribute)

. KernelInclusion(f) (attribute)

Arguments: f - a homomorphism between two modules.
Returns: the kernel of a homomorphism f between two modules.
The first variant Kernel returns the kernel of the homomorphism f as a module, while the latter

one returns the inclusion homomorphism of the kernel into the source of the homomorphism f .
Example

gap> hom := HomOverAlgebra(N,N);
[ <<[ 3, 2, 2 ]> ---> <[ 3, 2, 2 ]>>

, <<[ 3, 2, 2 ]> ---> <[ 3, 2, 2 ]>>
, <<[ 3, 2, 2 ]> ---> <[ 3, 2, 2 ]>>
, <<[ 3, 2, 2 ]> ---> <[ 3, 2, 2 ]>>
, <<[ 3, 2, 2 ]> ---> <[ 3, 2, 2 ]>>
]

gap> g := hom[1];
<<[ 3, 2, 2 ]> ---> <[ 3, 2, 2 ]>>



QPA 94

gap> M := CoKernel(g);
<[ 2, 2, 2 ]>
gap> f := CoKernelProjection(g);
<<[ 3, 2, 2 ]> ---> <[ 2, 2, 2 ]>>

gap> Range(f) = M;
true
gap> endo := EndOverAlgebra(N);
<algebra-with-one of dimension 5 over Rationals>
gap> RadicalOfAlgebra(endo);
<algebra of dimension 3 over Rationals>
gap> B := BasisVectors(Basis(N));
[ [ [ 1, 0, 0 ], [ 0, 0 ], [ 0, 0 ] ],

[ [ 0, 1, 0 ], [ 0, 0 ], [ 0, 0 ] ],
[ [ 0, 0, 1 ], [ 0, 0 ], [ 0, 0 ] ],
[ [ 0, 0, 0 ], [ 1, 0 ], [ 0, 0 ] ],
[ [ 0, 0, 0 ], [ 0, 1 ], [ 0, 0 ] ],
[ [ 0, 0, 0 ], [ 0, 0 ], [ 1, 0 ] ],
[ [ 0, 0, 0 ], [ 0, 0 ], [ 0, 1 ] ] ]

gap> p := HomFromProjective(B[1],N);
<<[ 1, 4, 3 ]> ---> <[ 3, 2, 2 ]>>

gap> U := Image(p);
<[ 1, 2, 2 ]>
gap> projinc := ImageProjectionInclusion(p);
[ <<[ 1, 4, 3 ]> ---> <[ 1, 2, 2 ]>>

, <<[ 1, 2, 2 ]> ---> <[ 3, 2, 2 ]>>
]

gap> U = Range(projinc[1]);
true
gap> Kernel(p);
<[ 0, 2, 1 ]>

7.3.21 LeftMinimalVersion

. LeftMinimalVersion(f) (attribute)

Arguments: f - a homomorphism between two modules.
Returns: the left minimal version f’ of the homomorphism f together with the a list B of modules

such that the direct sum of the modules, Range(f’) and the modules in the list B is isomorphic to
Range(f).

7.3.22 MatrixOfHomomorphismBetweenProjectives

. MatrixOfHomomorphismBetweenProjectives(f) (operation)

Arguments: f – a homomorphism between two projective modules.
Returns: for a homomorphism f of projective A-modules from P = ⊕viA to P′ = ⊕wiA, where

vi and wi are vertices, the homomorphism as a matrix in ⊕viAwi.
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7.3.23 RightMinimalVersion

. RightMinimalVersion(f) (attribute)

Arguments: f - a homomorphism between two modules.
Returns: the right minimal version f’ of the homomorphism f together with the a list B of mod-

ules such that the direct sum of the modules, Source(f’) and the modules on the list B is isomorphic
to Source(f).

Example
gap> H:= HomOverAlgebra(N,N);;
gap> RightMinimalVersion(H[1]);
[ <<[ 1, 0, 0 ]> ---> <[ 3, 2, 2 ]>>

, [ <[ 2, 2, 2 ]> ] ]
gap> LeftMinimalVersion(H[1]);
[ <<[ 3, 2, 2 ]> ---> <[ 1, 0, 0 ]>>

, [ <[ 2, 2, 2 ]> ] ]
gap> S := SimpleModules(A)[1];;
gap> MinimalRightApproximation(N,S);
<<[ 1, 0, 0 ]> ---> <[ 1, 0, 0 ]>>

gap> S := SimpleModules(A)[3];;
gap> MinimalLeftApproximation(S,N);
<<[ 0, 0, 1 ]> ---> <[ 2, 2, 2 ]>>

7.3.24 RadicalOfModuleInclusion

. RadicalOfModuleInclusion(M) (attribute)

Arguments: M - a module.
Returns: the inclusion of the radical of the module M into M .
The radical of M can be accessed using Source, or it can be computed directly via the command

RadicalOfModule (6.4.37). If the algebra over which M is a module is not a finite dimensional path
algebra or an admissible quotient of a path algebra, then it will search for other methods.

7.3.25 RejectOfModule

. RejectOfModule(M, N) (operation)

Arguments: N , M – two path algebra modules (PathAlgebraMatModule).
Returns: the reject of the module M in the module N as an inclusion homomorhpism from the

reject of M into N .

7.3.26 SocleOfModuleInclusion

. SocleOfModuleInclusion(M) (operation)

Arguments: M - a module.
Returns: the inclusion of the socle of the module M into M .
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The socle of M can be accessed using Source, or it can be computed directly via the command
SocleOfModule (6.4.40).

7.3.27 SubRepresentationInclusion

. SubRepresentationInclusion(M, gens) (operation)

Arguments: M - a module, gens - a list of elements in M .
Returns: the inclusion of the submodule generated by the generators gens into the module M .
The function checks if gens consists of elements in M , and returns an error message otherwise.

The module given by the submodule generated by the generators gens can be accessed using Source.

7.3.28 TopOfModuleProjection

. TopOfModuleProjection(M) (operation)

Arguments: M - a module.
Returns: the projection from the module M to the top of the module M .
The module given by the top of the module M can be accessed using Range of the homomorphism.

Example
gap> f := RadicalOfModuleInclusion(N);
<<[ 0, 2, 2 ]> ---> <[ 3, 2, 2 ]>>

gap> radN := Source(f);
<[ 0, 2, 2 ]>
gap> g := SocleOfModuleInclusion(N);
<<[ 1, 0, 2 ]> ---> <[ 3, 2, 2 ]>>

gap> U := SubRepresentationInclusion(N,[B[5]+B[6],B[7]]);
<<[ 0, 2, 2 ]> ---> <[ 3, 2, 2 ]>>

gap> h := TopOfModuleProjection(N);
<<[ 3, 2, 2 ]> ---> <[ 3, 0, 0 ]>>

7.3.29 TraceOfModule

. TraceOfModule(M, N) (operation)

Arguments: M , C – two path algebra modules (PathAlgebraMatModule).
Returns: the trace of the module M in the module N as an inclusion homomorhpism from the

trace of M to N .



Chapter 8

Homological algebra

This chapter describes the homological algebra that is implemented in QPA.
The example used throughout this chapter is the following.

Example
gap> Q := Quiver(3,[[1,2,"a"],[1,2,"b"],[2,2,"c"],[2,3,"d"],
> [3,1,"e"]]);;
gap> KQ := PathAlgebra(Rationals, Q);;
gap> AssignGeneratorVariables(KQ);;
gap> rels := [d*e,c^2,a*c*d-b*d,e*a];;
gap> A := KQ/rels;;
gap> mat := [["a",[[1,2],[0,3],[1,5]]],["b",[[2,0],[3,0],[5,0]]],
> ["c",[[0,0],[1,0]]],["d",[[1,2],[0,1]]],["e",[[0,0,0],[0,0,0]]]];;
gap> N := RightModuleOverPathAlgebra(A,mat);;

8.1 Homological algebra

8.1.1 1stSyzygy

. 1stSyzygy(M) (attribute)

Arguments: M – a path algebra module (PathAlgebraMatModule).
Returns: the first syzygy of the representation M as a representation.

8.1.2 AllComplementsOfAlmostCompleteTiltingModule

. AllComplementsOfAlmostCompleteTiltingModule(M, X) (operation)

. AllComplementsOfAlmostCompleteCotiltingModule(M, X) (operation)

Arguments: M , X - two PathAlgebraMatModule’s.
Returns: all the complements of the almost complete (co-)tilting module M as two exact se-

quences, the first is all complements which are gotten as an add M -resolution of X and the second is
all complements which are gotten as an add M -coresolution of X . If there are no complements to the
left of X , then an empty list is returned. Similarly for to the right of X . In particular, if X has no other
complements the list [[],[]] is returned.

97
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8.1.3 CotiltingModule

. CotiltingModule(M, n) (operation)

Arguments: M , n - a PathAlgebraMatModule and a positive integer.
Returns: false if M is not a cotilting module of injective dimension at most a . Otherwise, it

returns the injective dimension of M and the resolution of all indecomposable injective modules in
add M .

8.1.4 DominantDimensionOfAlgebra

. DominantDimensionOfAlgebra(A, n) (operation)

Arguments: A , n - a quiver algebra, a positive integer.
Returns: the dominant dimension of the algebra A if the dominant dimension is less or equal to

n . If the function can decide that the dominant dimension is infinite, it returns infinity. Otherwise,
if the dominant dimension is larger than n , then it returns false.

8.1.5 DominantDimensionOfModule

. DominantDimensionOfModule(M, n) (operation)

Arguments: M , n - a PathAlgebraMatModule, a positive integer.
Returns: the dominant dimension of the module M if the dominant dimension is less or equal to

n . If the function can decide that the dominant dimension is infinite, it returns infinity. Otherwise,
if the dominant dimension is larger than n , then it returns false.

8.1.6 ExtAlgebraGenerators

. ExtAlgebraGenerators(M, n) (operation)

Arguments: M - a module, n - a positive integer.
Returns: a list of three elements, where the first element is the dimensions of Ext^[0..n](M,M),

the second element is the number of minimal generators in the degrees [0..n], and the third element is
the generators in these degrees.

This function computes the generators of the Ext-algebra Ext∗(M,M) up to degree n .

8.1.7 ExtOverAlgebra

. ExtOverAlgebra(M, N) (operation)

Arguments: M , N - two modules.
Returns: a list of three elements ExtOverAlgebra, where the first element is the map from the

first syzygy, Ω(M) to the projective cover, P(M) of the module M , the second element is a basis of
Ext1(M,N) in terms of elements in Hom(Ω(M),N) and the third element is a function that takes as an
argument a homomorphism in Hom(Omega(M),N) and returns the coefficients of this element when
written in terms of the basis of Ext1(M,N).
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The function checks if the arguments M and N are modules of the same algebra, and returns an
error message otherwise. It Ext1(M,N) is zero, an empty list is returned.

8.1.8 FaithfulDimension

. FaithfulDimension(M) (attribute)

Arguments: M - a PathAlgebraMatModule.
Returns: the faithful dimension of the module M .

8.1.9 GlobalDimensionOfAlgebra

. GlobalDimensionOfAlgebra(A, n) (operation)

Arguments: A , n - a quiver algebra, a positive integer.
Returns: the global dimension of A if the global dimension is less or equal to n . If the func-

tion can decide that the global dimension is infinite, it returns infinity. Otherwise, if the global
dimension is larger than n , then it returns false.

8.1.10 GorensteinDimension

. GorensteinDimension(A) (attribute)

Arguments: A - a quiver algebra.
Returns: the Gorenstein dimension of A , if the Gorenstein dimension has been computed. Oth-

erwise it returns an error message.

8.1.11 GorensteinDimensionOfAlgebra

. GorensteinDimensionOfAlgebra(A, n) (operation)

Arguments: A , n - a quiver algebra, a positive integer.
Returns: the Gorenstein dimension of A if the Gorenstein dimension is less or equal to n . Other-

wise, if the Gorenstein dimension is larger than n , then it returns false.

8.1.12 HaveFiniteCoresolutionInAddM

. HaveFiniteCoresolutionInAddM(N, M, n) (operation)

Arguments: N , M , n - two PathAlgebraMatModule’s and an integer.
Returns: false if N does not have a coresolution of length at most n in add M , otherwise it returns

the coresolution of N of length at most n .

8.1.13 HaveFiniteResolutionInAddM

. HaveFiniteResolutionInAddM(N, M, n) (operation)
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Arguments: N , M , n - two PathAlgebraMatModule’s and an integer.
Returns: false if N does not have a resolution of length at most n in add M , otherwise it returns

the resolution of N of length at most n .

8.1.14 InjDimension

. InjDimension(M) (attribute)

Arguments: M - a PathAlgebraMatModule.

If the injetive dimension of the module M has been computed, then the projective dimension is
returned.

8.1.15 InjDimensionOfModule

. InjDimensionOfModule(M, n) (operation)

Arguments: M, n - a PathAlgebraMatModule, a positive integer.
Returns: Returns the injective dimension of the module M if it is less or equal to n . Otherwise it

returns false.

8.1.16 InjectiveEnvelope

. InjectiveEnvelope(M) (attribute)

Arguments: M - a module.
Returns: the injective envelope of M , that is, returns the map M→ I(M).
If the module M is zero, then the zero map from M is returned.

8.1.17 IsCotiltingModule

. IsCotiltingModule(M) (attribute)

Arguments: M - a PathAlgebraMatModule.
Returns: true if the module M has been checked to be a cotilting mdoule, otherwise it returns an

error message.

8.1.18 IsNthSyzygy

. IsNthSyzygy(M, n) (operation)

Arguments: M – a path algebra module (PathAlgebraMatModule), n – a positive integer.
Returns: true, if the representation M is isomorphic to a n -th syzygy of some module, and false

otherwise.
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8.1.19 IsOmegaPeriodic

. IsOmegaPeriodic(M, n) (operation)

Arguments: M – a path algebra module (PathAlgebraMatModule), n – a positive integer.
Returns: i, where i is the smallest positive integer less or equal n such that the representation M

is isomorphic to the i-th syzygy of M , and false otherwise.

8.1.20 IsTtiltingModule

. IsTtiltingModule(M) (attribute)

Arguments: M - a PathAlgebraMatModule.
Returns: true if the module M has been checked to be a tilting mdoule, otherwise it returns an

error message.

8.1.21 IyamaGenerator

. IyamaGenerator(M) (operation)

Arguments: M – a path algebra module (PathAlgebraMatModule).
Returns: a module N such that M is a direct summand of N and such that the global dimension

of the endomorphism ring of N is finite using the algorithm provided by Osamu Iyama (add reference
here).

8.1.22 LeftApproximationByAddTHat

. LeftApproximationByAddTHat(T, M) (operation)

Arguments: T , M – two path algebra modules (PathAlgebraMatModule).
Returns: the minimal left âddT -approximation of M .
The function checks if the first argument is a cotilting module, that is, checks if the attribute of

IsCotiltingModule is set. This attribute can be set by giving the command CotiltingModule(
T, n ) for some positive integer n which is at least the injective dimension of the module T .

8.1.23 LeftFacMApproximation

. LeftFacMApproximation(C, M) (operation)

. MinimalLeftFacMApproximation(C, M) (operation)

Arguments: C , M – two path algebra modules (PathAlgebraMatModule).
Returns: a left FacM-approximation of the module C, where the first version returns a not nec-

essarily minimal left FacM-approximation and the second returns a minimal approximation.

8.1.24 LeftMutationOfTiltingModuleComplement

. LeftMutationOfTiltingModuleComplement(M, N) (operation)

. LeftMutationOfCotiltingModuleComplement(M, N) (operation)
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Arguments: M , N – two path algebra modules (PathAlgebraMatModule).
Returns: a left mutation of the complement N of the almost complete tilting/cotilting module M ,

if such a complement exists. Otherwise it returns false.

8.1.25 LeftSubMApproximation

. LeftSubMApproximation(C, M) (operation)

. MinimalLeftSubMApproximation(C, M) (operation)

Arguments: C , M – two path algebra modules (PathAlgebraMatModule).
Returns: a minimal left SubM-approximation of the module C.

8.1.26 LiftingInclusionMorphisms

. LiftingInclusionMorphisms(f, g) (operation)

Arguments: f , g - two homomorphisms with common range.
Returns: a factorization of g in terms of f , whenever possible and fail otherwise.
Given two inclusions f : B→ C and g : A→ C, this function constructs a morphism from A to

B, whenever the image of g is contained in the image of f . Otherwise the function returns fail.
The function checks if f and g are one-to-one, if they have the same range and if the image of g is
contained in the image of f .

8.1.27 LiftingMorphismFromProjective

. LiftingMorphismFromProjective(f, g) (operation)

Arguments: f , g - two homomorphisms with common range.
Returns: a factorization of g in terms of f , whenever possible and fail otherwise.
Given two morphisms f : B → C and g : P → C, where P is a direct sum of indecomposable

projective modules constructed via DirectSumOfQPAModules and f an epimorphism, this function
finds a lifting of g to B. The function checks if P is a direct sum of indecomposable projective modules,
if f is onto and if f and g have the same range.

Example
gap> B := BasisVectors(Basis(N));
[ [ [ 1, 0, 0 ], [ 0, 0 ], [ 0, 0 ] ],

[ [ 0, 1, 0 ], [ 0, 0 ], [ 0, 0 ] ],
[ [ 0, 0, 1 ], [ 0, 0 ], [ 0, 0 ] ],
[ [ 0, 0, 0 ], [ 1, 0 ], [ 0, 0 ] ],
[ [ 0, 0, 0 ], [ 0, 1 ], [ 0, 0 ] ],
[ [ 0, 0, 0 ], [ 0, 0 ], [ 1, 0 ] ],
[ [ 0, 0, 0 ], [ 0, 0 ], [ 0, 1 ] ] ]

gap> g := SubRepresentationInclusion(N,[B[1],B[4]]);
<<[ 1, 2, 2 ]> ---> <[ 3, 2, 2 ]>>

gap> f := SubRepresentationInclusion(N,[B[1],B[2]]);
<<[ 2, 2, 2 ]> ---> <[ 3, 2, 2 ]>>
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gap> LiftingInclusionMorphisms(f,g);
<<[ 1, 2, 2 ]> ---> <[ 2, 2, 2 ]>>

gap> S := SimpleModules(A);
[ <[ 1, 0, 0 ]>, <[ 0, 1, 0 ]>, <[ 0, 0, 1 ]> ]
gap> homNS := HomOverAlgebra(N,S[1]);
[ <<[ 3, 2, 2 ]> ---> <[ 1, 0, 0 ]>>

, <<[ 3, 2, 2 ]> ---> <[ 1, 0, 0 ]>>
, <<[ 3, 2, 2 ]> ---> <[ 1, 0, 0 ]>>
]

gap> f := homNS[1];
<<[ 3, 2, 2 ]> ---> <[ 1, 0, 0 ]>>

gap> p := ProjectiveCover(S[1]);
<<[ 1, 4, 3 ]> ---> <[ 1, 0, 0 ]>>

gap> LiftingMorphismFromProjective(f,p);
<<[ 1, 4, 3 ]> ---> <[ 3, 2, 2 ]>>
[ [(1)*v1], [(1)*v2], [(1)*v3], [(1)*a], [(1)*b], [(1)*c], [(1)*d], [(1)*e]
] )> >

8.1.28 LeftApproximationByAddM

. LeftApproximationByAddM(C, M) (operation)

. MinimalLeftAddMApproximation(C, M) (attribute)

. MinimalLeftApproximation(C, M) (attribute)

Arguments: C , M - two modules.
Returns: the minimal left addM-approximation in the two last versions of the module C . In the

first it returns some left approximation. Note: The order of the arguments is opposite of the order for
minimal right approximations.

8.1.29 RightApproximationByAddM

. RightApproximationByAddM(M, C/modulelist, C) (operation)

. MinimalRightApproximation(M, C) (attribute)

. MinimalRightAddMApproximation(M, C) (attribute)

Arguments: M , C - two modules.
Returns: the minimal right addM-approximation in the two last versions of the module C . In the

two first it returns some right approximation, where in the first version the input is two modules, while
in the second version the input is a list of modules and a module. Note: The order of the arguments is
opposite of the order for minimal left approximations.

8.1.30 RadicalRightApproximationByAddM

. RadicalRightApproximationByAddM(modulelist, t) (operation)
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Arguments: modulelist , t - a list of modules and an index of this list.
Returns: a radical right approximation of moduleslist[ t ] by the additive closure of the

modules in the list of modules modulelist , that is, returns a homomorphism f : MMt →Mt , where
Mt is the t-th module in the modulelist .

8.1.31 MorphismOnKernel

. MorphismOnKernel(f, g, alpha, beta) (operation)

. MorphismOnImage(f, g, alpha, beta) (operation)

. MorphismOnCoKernel(f, g, alpha, beta) (operation)

Arguments: f , g , alpha , beta - four homomorphisms of modules.
Returns: the morphism induced on the kernels, the images or the cokernels of the morphisms f

and g , respectively, whenever f : A→ B, β : B→ B′, α : A→ A′ and g : A′→ B′ forms a commutative
diagram.

It is checked if f , g , alpha , beta forms a commutative diagram, that is, if f β −αg = 0.
Example

gap> hom := HomOverAlgebra(N,N);
[ <<[ 3, 2, 2 ]> ---> <[ 3, 2, 2 ]>>

, <<[ 3, 2, 2 ]> ---> <[ 3, 2, 2 ]>>
, <<[ 3, 2, 2 ]> ---> <[ 3, 2, 2 ]>>
, <<[ 3, 2, 2 ]> ---> <[ 3, 2, 2 ]>>
, <<[ 3, 2, 2 ]> ---> <[ 3, 2, 2 ]>>
]

gap> g := MorphismOnKernel(hom[1],hom[2],hom[1],hom[2]);
<<[ 2, 2, 2 ]> ---> <[ 2, 2, 2 ]>>

gap> IsomorphicModules(Source(g),Range(g));
true
gap> p := ProjectiveCover(N);
<<[ 3, 12, 9 ]> ---> <[ 3, 2, 2 ]>>

gap> N1 := Kernel(p);
<[ 0, 10, 7 ]>
gap> pullback := PullBack(p,hom[1]);
[ <<[ 3, 12, 9 ]> ---> <[ 3, 2, 2 ]>>

, <<[ 3, 12, 9 ]> ---> <[ 3, 12, 9 ]>>
]

gap> Kernel(pullback[1]);
<[ 0, 10, 7 ]>
gap> IsomorphicModules(N1,Kernel(pullback[1]));
true
gap> t := LiftingMorphismFromProjective(p,p*hom[1]);
<<[ 3, 12, 9 ]> ---> <[ 3, 12, 9 ]>>

gap> s := MorphismOnKernel(p,p,t,hom[1]);
<<[ 0, 10, 7 ]> ---> <[ 0, 10, 7 ]>>

gap> Source(s) = N1;
true
gap> q := KernelInclusion(p);
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<<[ 0, 10, 7 ]> ---> <[ 3, 12, 9 ]>>

gap> pushout := PushOut(q,s);
[ <<[ 0, 10, 7 ]> ---> <[ 3, 12, 9 ]>>

, <<[ 3, 12, 9 ]> ---> <[ 3, 12, 9 ]>>
]

gap> U := CoKernel(pushout[1]);
<[ 3, 2, 2 ]>
gap> IsomorphicModules(U,N);
true

8.1.32 NthSyzygy

. NthSyzygy(M, n) (operation)

Arguments: M – a path algebra module (PathAlgebraMatModule), n – a non-negative integer.
Returns: the n -th syzygy of M .
This functions computes a projective resolution of M and finds the n -th syzygy of the module M .

8.1.33 NumberOfComplementsOfAlmostCompleteTiltingModule

. NumberOfComplementsOfAlmostCompleteTiltingModule(M) (operation)

. NumberOfComplementsOfAlmostCompleteCotiltingModule(M) (operation)

Arguments: M – a PathAlgebraMatModule.
Returns: the number complements of an almost complete tilting/cotilting module M , assuming

that M is an almost complete tilting module.

8.1.34 ProjDimension

. ProjDimension(M) (attribute)

Arguments: M - a PathAlgebraMatModule.
Returns: the projective dimension of the module M , if it has been computed.

8.1.35 ProjDimensionOfModule

. ProjDimensionOfModule(M) (operation)

Arguments: M, n - a PathAlgebraMatModule, a positive integer.
Returns: Returns the projective dimension of the module M if it is less or equal to n . Otherwise

it returns false.

8.1.36 ProjectiveCover

. ProjectiveCover(M) (attribute)
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Arguments: M - a module.
Returns: the projective cover of M , that is, returns the map P(M)→M.
If the module M is zero, then the zero map to M is returned.

8.1.37 ProjectiveResolutionOfPathAlgebraModule

. ProjectiveResolutionOfPathAlgebraModule(M, n) (operation)

Arguments: M - a path algebra module (PathAlgebraMatModule), n - a positive integer.
Returns: in terms of attributes RProjectives, ProjectivesFList and Maps a projective res-

olution of M out to stage n , where RProjectives are the projectives in the resolution lifted up to
projectives over the path algebra, ProjectivesFList are the generators of the projective modules
given in RProjectives in terms of elements in the first projective in the resolution and Maps contains
the information about the maps in the resolution.

The algorithm for computing this projective resolution is based on the paper [GSZ01]. In addition,
the algebra over which the modules are defined is available via the attribute ParentAlgebra.

8.1.38 ProjectiveResolutionOfSimpleModuleOverEndo

. ProjectiveResolutionOfSimpleModuleOverEndo(modulelist, t, length) (operation)

Arguments: modulelist - a list of module, t - an index of the list of modules, length - length
of the resolution.

Returns: information about the projective dimension and non-projective summands of the syzy-
gies of the simple module corresponding to the t -th indecomposable projective module over the en-
domorphism ring of the direct sum of all the modules in modulelist (all assumed to be indecompos-
able). The non-projective summands in the syzygies from the second syzygy up to the length -syzygy
are always returned. If the projective dimension is less or equal to length , the projective dimension
is returned. Otherwise, it returns that the projective dimension is bigger that length . The output has
the format [ info on projective dimension, syzygies ].

8.1.39 PullBack

. PullBack(f, g) (operation)

Arguments: f , g - two homomorphisms with a common range.
Returns: the pullback of the maps f and g .
It is checked if f and g have the same range. Given the input f : A→ B (horizontal map) and

g : C→B (vertical map), the pullback E is returned as the two homomorphisms [ f ′,g′], where f ′ : E→
C (horizontal map) and g′ : E→ A (vertical map).

8.1.40 PushOut

. PushOut(f, g) (operation)

Arguments: f , g - two homomorphisms between modules with a common source.
Returns: the pushout of the maps f and g .



QPA 107

It is checked if f and g have the same source. Given the input f : A→ B (horizontal map) and
g : A→C (vertical map), the pushout E is returned as the two homomorphisms [ f ′,g′], where f ′ : C→
E (horizontal map) and g′ : B→ E (vertical map).

Example
gap> S := SimpleModules(A);
[ <[ 1, 0, 0 ]>, <[ 0, 1, 0 ]>, <[ 0, 0, 1 ]> ]
gap> Ext := ExtOverAlgebra(S[2],S[2]);
[ <<[ 0, 1, 2 ]> ---> <[ 0, 2, 2 ]>>

, [ <<[ 0, 1, 2 ]> ---> <[ 0, 1, 0 ]>>
], function( map ) ... end ]

gap> Length(Ext[2]);
1
gap> # i.e. Ext^1(S[2],S[2]) is 1-dimensional
gap> pushout := PushOut(Ext[2][1],Ext[1]);
[ <<[ 0, 2, 2 ]> ---> <[ 0, 2, 0 ]>>

, <<[ 0, 1, 0 ]> ---> <[ 0, 2, 0 ]>>
]

gap> f := CoKernelProjection(pushout[1]);
<<[ 0, 2, 0 ]> ---> <[ 0, 0, 0 ]>>

gap> U := Range(pushout[1]);
<[ 0, 2, 0 ]>

8.1.41 RightApproximationByPerpT

. RightApproximationByPerpT(T, M) (operation)

Arguments: T , M – two path algebra modules (PathAlgebraMatModule).
Returns: the minimal right ⊥T -approximation of M .
The function checks if the first argument is a cotilting module, that is, checks if the attribute of

IsCotiltingModule is set. This attribute can be set by giving the command CotiltingModule(
T, n ) for some positive integer n which is at least the injective dimension of the module T .

8.1.42 RightFacMApproximation

. RightFacMApproximation(M, C) (operation)

. MinimalRightFacMApproximation(M, C) (operation)

Arguments: M , C – two path algebra modules (PathAlgebraMatModule).
Returns: a minimal right FacM-approximation of the module C.

8.1.43 RightMutationOfTiltingModuleComplement

. RightMutationOfTiltingModuleComplement(M, N) (operation)

. RightMutationOfCotiltingModuleComplement(M, N) (operation)

Arguments: M , N – two path algebra modules (PathAlgebraMatModule).
Returns: a right mutation of the complement N of the almost complete tilting/cotilting module

M , if such a complement exists. Otherwise it returns false.
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8.1.44 RightSubMApproximation

. RightSubMApproximation(M, C) (operation)

. MinimalRightSubMApproximation(M, C) (operation)

Arguments: M , C – two path algebra modules (PathAlgebraMatModule).
Returns: a right SubM-approximation of the module C, where the first version returns a not

necessarily minimal right SubM-approximation and the second returns a minimal approximation.

8.1.45 N_RigidModule

. N_RigidModule(M, n) (operation)

Arguments: M , n - a PathAlgebraMatModule, an integer.
Returns: true if M is a n -rigid module. Otherwise it returns false.

8.1.46 TiltingModule

. TiltingModule(M, n) (operation)

Arguments: M , n - a PathAlgebraMatModule and a positive integer.
Returns: false if M is not a tilting module of projective dimension at most n . Otherwise, it returns

the projective dimension of M and the coresolution of all indecomposable projective modules in addM.



Chapter 9

Auslander-Reiten theory

This chapter describes the functions implemented for almost split sequences and Auslander-Reiten
theory in QPA.

9.1 Almost split sequences and AR-quivers

9.1.1 AlmostSplitSequence

. AlmostSplitSequence(M) (attribute)

. AlmostSplitSequence(M, e) (attribute)

Arguments: M - an indecomposable non-projective module, e - either l = left or r = right
Returns: the almost split sequence ending in the module M if it is indecomposable and not

projective, for the first variant. The second variant finds the almost split sequence starting or ending in
the module M depending on whether the second argument e is l or r (l = almost split sequence starting
with M , or r = almost split sequence ending in M ), if the module is indecomposable and not injective
or not projective, respectively. It returns fail if the module is injective (l) or projective (r).

The almost split sequence is returned as a pair of maps, the monomorphism and the epimorphism.
The function assumes that the module M is indecomposable, and the source of the monomorphism (l)
or the range of the epimorphism (r) is a module that is isomorphic to M , not necessarily identical.

9.1.2 AlmostSplitSequenceInPerpT

. AlmostSplitSequenceInPerpT(T, M) (operation)

Arguments: T - a cotilting module, M - an indecomposable non-projective module
Returns: the almost split sequence in ⊥T ending in the module M , if the module is indecompos-

able. It returns fail if the module is in addT projective. The almost split sequence is returned as a pair
of maps, the monomorphism and the epimorphism.

The function assumes that the module M is indecomposable and in ⊥T , and the range of the epi-
morphism is a module that is isomorphic to the input, not necessarily identical.
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9.1.3 IsTauPeriodic

. IsTauPeriodic(M, n) (operation)

Arguments: M – a path algebra module (PathAlgebraMatModule), n – be a positive integer.
Returns: i, where i is the smallest positive integer less or equal n such that the representation M

is isomorphic to the τ i(M), and false otherwise.

9.1.4 PredecessorOfModule

. PredecessorOfModule(M, n) (operation)

Arguments: M - an indecomposable non-projective module and n - a positive integer.
Returns: the predecessors of the module M in the AR-quiver of the algebra M is given over of

distance less or equal to n .
It returns two lists, the first is the indecomposable modules in the different layers and the second is

the valuations for the arrows in the AR-quiver. The different entries in the first list are the modules at
distance zero, one, two, three, and so on, until layer n . The m-th entry in the second list is the valuations
of the irreducible morphism from indecomposable module number i in layer m+1 to indecomposable
module number j in layer m for the values of i and j there is an irreducible morphism. Whenever
false occur in the output, it means that this valuation has not been computed. The function assumes
that the module M is indecomposable and that the quotient of the path algebra is given over a finite
field.

Example
gap> A := KroneckerAlgebra(GF(4),2);
<GF(2^2)[<quiver with 2 vertices and 2 arrows>]>
gap> S := SimpleModules(A)[1];
<[ 1, 0 ]>
gap> ass := AlmostSplitSequence(S);
[ <<[ 3, 2 ]> ---> <[ 4, 2 ]>>

, <<[ 4, 2 ]> ---> <[ 1, 0 ]>>
]

gap> DecomposeModule(Range(ass[1]));
[ <[ 2, 1 ]>, <[ 2, 1 ]> ]
gap> PredecessorsOfModule(S,5);
[ [ [ <[ 1, 0 ]> ], [ <[ 2, 1 ]> ], [ <[ 3, 2 ]> ], [ <[ 4, 3 ]> ],

[ <[ 5, 4 ]> ], [ <[ 6, 5 ]> ] ],
[ [ [ 1, 1, [ 2, false ] ] ], [ [ 1, 1, [ 2, 2 ] ] ],

[ [ 1, 1, [ 2, 2 ] ] ], [ [ 1, 1, [ 2, 2 ] ] ],
[ [ 1, 1, [ false, 2 ] ] ] ] ]

gap> A:=NakayamaAlgebra([5,4,3,2,1],GF(4));
<GF(2^2)[<quiver with 5 vertices and 4 arrows>]>
gap> S := SimpleModules(A)[1];
<[ 1, 0, 0, 0, 0 ]>
gap> PredecessorsOfModule(S,5);
[ [ [ <[ 1, 0, 0, 0, 0 ]> ], [ <[ 1, 1, 0, 0, 0 ]> ],

[ <[ 0, 1, 0, 0, 0 ]>, <[ 1, 1, 1, 0, 0 ]> ],
[ <[ 0, 1, 1, 0, 0 ]>, <[ 1, 1, 1, 1, 0 ]> ],
[ <[ 0, 0, 1, 0, 0 ]>, <[ 0, 1, 1, 1, 0 ]>, <[ 1, 1, 1, 1, 1 ]>

], [ <[ 0, 0, 1, 1, 0 ]>, <[ 0, 1, 1, 1, 1 ]> ] ],
[ [ [ 1, 1, [ 1, false ] ] ],
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[ [ 1, 1, [ 1, 1 ] ], [ 2, 1, [ 1, false ] ] ],
[ [ 1, 1, [ 1, 1 ] ], [ 1, 2, [ 1, 1 ] ],

[ 2, 2, [ 1, false ] ] ],
[ [ 1, 1, [ 1, 1 ] ], [ 2, 1, [ 1, 1 ] ], [ 2, 2, [ 1, 1 ] ],

[ 3, 2, [ 1, false ] ] ],
[ [ 1, 1, [ false, 1 ] ], [ 1, 2, [ false, 1 ] ],

[ 2, 2, [ false, 1 ] ], [ 2, 3, [ false, 1 ] ] ] ] ]



Chapter 10

Chain complexes

10.1 Introduction

If A is an abelian category, then a chain complex of objects of A is a sequence

· · · −→Ci+1
di+1−→Ci

di−→Ci−1
di−1−→ ·· ·

where Ci is an object of A for all i, and di is a morphism of A for all i such that the composition of
two consecutive maps of the complex is zero. The maps are called the differentials of the complex.
A complex is called bounded above (resp. below) if there is a bound b such that Ci = 0 for all i > b
(resp. i < b). A complex is bounded if it is both bounded below and bounded above.

The challenge when representing chain complexes in software is to handle their infinite nature. If
a complex is not bounded, or not known to be bounded, how can we represent it in an immutable way?
Our solution is to use a category called InfList (for “infinite list”) to store the differentials of the
complex. The properties of the IsInfList category is described in 10.2. An IsQPAComplex object
consists of one IsInfList for the differentials, and it also has an IsCat object as an attribute. The
IsCat category is a representation of an abelian category, see 10.3.

To work with bounded complexes one does not need to know much about the IsInfList category.
A bounded complex can be created by simply giving a list of the differentials and the degree of the
first differential as input (see FiniteComplex (10.4.5)), and to create a stalk complex the stalk object
and its degree suffice as input (see StalkComplex (10.4.6)). In both cases an IsCat object is also
needed.

Example
gap> C := FiniteComplex(cat, 1, [g,f]);
0 -> 2:(1,0) -> 1:(2,2) -> 0:(1,1) -> 0
gap> Ms := StalkComplex(cat, M, 3);
0 -> 3:(2,2) -> 0

10.2 Infinite lists

In this section we give documentation for the IsInfList category. We start by giving a representation
of ±∞. Then we quickly describe the IsInfList category, before we turn to the underlying structure
of the infinite lists – the half infinite lists (IsHalfInfList). Most of the functionality of the infinite
lists come from this category. Finally, we give the constructors for infinite lists, and some methods for
manipulating such objects.
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10.2.1 IsInfiniteNumber

. IsInfiniteNumber (Category)

A category for infinite numbers.

10.2.2 PositiveInfinity

. PositiveInfinity (Var)

A global variable representing the number ∞. It is greater than any integer, but it can not be
compared to numbers which are not integers. It belongs to the IsInfiniteNumber category.

10.2.3 NegativeInfinity

. NegativeInfinity (Var)

A global variable representing the number −∞. It is smaller than any integer, but it can not be
compared to numbers which are not integers. It belongs to the IsInfiniteNumber category.

10.2.4 IsInfList

. IsInfList (Category)

An infinite list is an immutable representation of a list with possibly infinite range of indeces. It
consists of three parts: The “middle part” is finite and covers some range [a,b] of indices, the “positive
part” covers the range [b+ 1,∞) of indices, and the “negative part” convers the range (−∞,a− 1] of
indices. Note that none of the three parts are mandatory: The middle part may be an empty list, and
the positive part may be set to fail to achieve index range ending at b < ∞. Similary, if the index
range has lower bound a < ∞, put the negative part to be fail.

Each of the two infinite parts are described in one of the following ways: (1) A finite list which
is repeated indefinitely; (2) A function which takes an index in the list as argument and returns the
corresponding list item; (3) A function which takes an item from the list as argument and returns the
next item.

The two infinite parts are represented as “half infinite lists”, see 10.2.5. An infinite list can be
constructed in the following ways:

• From two half infinite lists and a middle part, MakeInfListFromHalfInfLists (10.2.22).

• Directly, by giving the same input as when constructing the above, MakeInfList (10.2.23).

• If all values of the infinite list are the image of the index under a function f , one can use
FunctionInfList (10.2.24).

• If all values of the infinite list are the same, one can use ConstantInfList (10.2.25).

• If the infinite list has a finite range, one can use FiniteInfList (10.2.26).

In addition, new infinite lists can be constructed from others by shift, splice, concatenation, extracting
parts or applying a function to the elements.
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10.2.5 IsHalfInfList

. IsHalfInfList (Category)

A half infinite list is a representation of a list with indeces in the range [a,∞) or (−∞,b]. An
infinite list is typically made from two half infinite lists, and half infinite lists can be extracted from
an infinite list. Hence, the half infinite list stores much of the information about an infinite list. One
main difference between an infinite list and a half infinite list is that the half infinite list does not have
any finite part, as the “middle” part of an infinite list.

10.2.6 \^

. \^(list, pos) (operation)

Arguments: list – either an infinite list or a half infinite list, pos – a valid index for list .
Returns: The value at position pos of list .

10.2.7 MakeHalfInfList

. MakeHalfInfList(start, direction, typeWithArgs, callback, repeatifyCallback)
(function)

Arguments: start – an integer, direction – either 1 or −1, typeWithArgs – a list which may
have different formats, callback – a function, repeatifyCallback – a function.

Returns: A newly created half infinite list with index range from start to ∞, or from −∞ to
start .

If the range should be [start,∞) then the value of direction is 1. if the range should be
(−∞,start], then the value of direction is −1.

The argument typeWithArgs can take one of the following forms:

• [ "repeat", repeatList ]

• [ "next", nextFunction, initialValue ]

• [ "next/repeat", nextFunction, initialValue ]

• [ "pos", posFunction ]

• [ "pos", posFunction, storeValues ]

repeatList is a list of values that should be repeated in the half infinite list. nextFunction returns
the value at position i, given the value at the previous position as argument. Here initialValue
is the value at position start. Similarly, posFunction returns the value at any position i, and it
may or may not store the values between the previous computed indeces and the newly computed
index. The default value of storeValues is true for "next" and "pos", and false for "repeat".
The type "next/repeat" works exactly like the type "next", except that when values in the list
are computed, the list will try to discover if the values are repeating. If this happens, the function
repeatifyCallback is called with two arguments: the non-repeating part at the beginning as a
normal list (this might be empty) and a new HalfInfList of type "repeat" for the repeating part.
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The argument callback is a function that is called whenever a new value of the list is computed.
It takes three arguments: The current position, the direction and the type (that is, typeWithArgs[1]).
If no callback function is needed, use false.

All the information given to create the list is stored, and can be retrieved later by the operations
listed in 10.2.8–10.2.18.

Example
gap> # make a HalfInfList from 0 to inf which repeats the list [ 2, 4, 6 ]
gap> list1 := MakeHalfInfList( 0, 1, [ "repeat", [ 2, 4, 6 ] ], false );
<object>
gap> list1^0;
2
gap> list1^5;
6
gap> # make a HalfInfList from 0 to inf with x^2 in position x
gap> f := function(x) return x^2; end;;
gap> list2 := MakeHalfInfList( 0, 1, [ "pos", f, false ], false );
<object>
gap> list2^0;
0
gap> list2^10;
100
gap> # make a HalfInfList from 0 to -inf where each new value adds 3
gap> # to the previous and the value in position 0 is 10
gap> g := function(x) return x+3; end;;
gap> list3 := MakeHalfInfList( 0, -1, [ "next", g, 7 ], false );
<object>
gap> list3^0;
10
gap> list3^-10;
40

10.2.8 StartPosition

. StartPosition(list) (operation)

list – a half infinite list.
Returns: The start position of list .

10.2.9 Direction

. Direction(list) (operation)

list – a half infinite list.
Returns: The direction of list (either 1 or −1).

10.2.10 InfListType

. InfListType(list) (operation)
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list – a half infinite list.
Returns: The type of list (either "pos", "repeat" or "next").

10.2.11 RepeatingList

. RepeatingList(list) (operation)

list – a half infinite list.
Returns: The repeating list of list if list is of type "repeat", and fail otherwise.

10.2.12 ElementFunction

. ElementFunction(list) (operation)

list – a half infinite list.
Returns: The element function of list if list is of type "next" or "pos", and fail otherwise.

10.2.13 IsStoringValues

. IsStoringValues(list) (operation)

list – a half infinite list.
Returns: true if all elements of the list are stored, false otherwise.

10.2.14 NewValueCallback

. NewValueCallback(list) (operation)

list – a half infinite list.
Returns: The callback function of the list.

10.2.15 IsRepeating

. IsRepeating(list) (operation)

list – a half infinite list.
Returns: true if the type of the list is "repeat".

10.2.16 InitialValue

. InitialValue(list) (operation)

list – a half infinite list.
Returns: If the list is of type "next" then the initial value is returned, otherwise it fails.
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10.2.17 LowestKnownPosition

. LowestKnownPosition(list) (operation)

list – a half infinite list.
Returns: The lowest index i such that the value at position i is known without computation (that

is, it is either stored, or the list has type "repeat").

10.2.18 HighestKnownValue

. HighestKnownValue(list) (operation)

list – a half infinite list.
Returns: The highest index i such that the value at position i is known without computation (that

is, it is either stored, or the list has type "repeat").
Example

gap> # we reuse the IsHalfInfLists from the previous example
gap> HighestKnownPosition(list1);
+inf
gap> HighestKnownPosition(list2);
"none"
gap> HighestKnownPosition(list3);
0

10.2.19 Shift

. Shift(list, shift) (operation)

Arguments: list – a half infinite list, shift – an integer.
Returns: A new half infinite list which is list with all values shifted shift positions to the

right if shift is positive, and to the left if shift is negative.

10.2.20 Cut

. Cut(list, pos) (operation)

Arguments: list – a half infinite list, pos – an integer within the range of list .
Returns: A new half infinite list which is list with some part cut off.
If the direction of list is positive, then the new list has range from cut to ∞. If the direction of

list is negative, then the new list has range from −∞ to cut. The values at position i of the new half
infinite list is the same as the value at position i of list .

10.2.21 HalfInfList

. HalfInfList(list, func) (operation)

Arguments: list – a half infinite list, func – a function which takes an element of the list as
argument.
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Returns: A half infinite list with the same range as list , where the value at position i is the
image of the value at position i of list under func .

10.2.22 MakeInfListFromHalfInfLists

. MakeInfListFromHalfInfLists(basePosition, middle, positive, negative) (function)

Arguments: basePosition – an integer, middle – a list, positive – a half infinite list,
negative – a half infinite list.

Returns: An infinite list with middle as is middle part, positive as its positive part and
negative as its negative part.

The starting position of positive must be basePosition + Length( middle ), and the start-
ing position of negative must be basePosition - 1. The returned list has middle[1] in position
basePosition , middle[2] in position basePosition + 1 and so on. Note that one probably wants
the positive half infinite list to have direction 1, and the negative half infinite list to have direction
−1.

Example
gap> # we want to construct an infinite list with 0 in position
gap> # 0 to 5, and x^2 in position x where x goes from 6 to inf,
gap> # and alternatingly 1 and -1 in position -1 to -inf.
gap> #
gap> basePosition := 0;;
gap> middle := [0,0,0,0,0,0];;
gap> f := function(x) return x^2; end;;
gap> positive := MakeHalfInfList( 6, 1, [ "pos", f, false ], false );
<object>
gap> altList := [ 1, -1 ];;
gap> negative := MakeHalfInfList( -1, -1, [ "repeat", altList ], false );
<object>
gap> inflist := MakeInfListFromHalfInfLists( basePosition, middle,
> positive, negative );
<object>
gap> inflist^0; inflist^5; inflist^6; inflist^-1; inflist^-4;
0
0
36
1
-1

10.2.23 MakeInfList

. MakeInfList(basePosition, middle, positive, negative, callback) (function)

Argments: basePosition – an integer, middle – a list, positive – a list describing the positive
part, negative – a list describing the negative part.

Returns: An infinite list with middle as is middle part, positive as its positive part and
negative as its negative part.

The major difference between this construction and the previous is that here the half in-
finite lists that will make the positive and negative parts are not entered directly as argu-
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ments. Instead, one enters “description lists”, which are of the same format as the argument
typeWithArgs of MakeHalfInfList (10.2.7). If the positive and/or negative part is specified with
type "next/repeat", then it will initially be of type "next", but will be replaced by a HalfInfList of
type "repeat" if it is discovered that the values are repeating.

Example
gap> # we construct the same infinite list as in the previous example
gap> basePosition := 0;;
gap> middle := [0,0,0,0,0,0];;
gap> f := function(x) return x^2; end;;
gap> altList := [ 1, -1 ];;
gap> inflist2 := MakeInfList( 0, middle, [ "pos", f, false ], [ "repeat",
> altList ], false );
<object>
gap> inflist2^0; inflist2^5; inflist2^6; inflist2^-1; inflist2^-4;
0
0
36
1
-1
gap> n := function( x ) return ( x + 1 ) mod 5; end;;
gap> list := MakeInfList( 0, [ 0 ], [ "next/repeat", n, 0 ],
> [ "repeat", [ 0 ] ], false );;
gap> list^2;
2
gap> IsRepeating( PositivePart( list ) );
false
gap> list^11;
1
gap> IsRepeating( PositivePart( list ) );
true

10.2.24 FunctionInfList

. FunctionInfList(func) (function)

Arguments: func – a function that takes an integer as argument.
Returns: An infinite list where the value at position i is the function func applied to i.

10.2.25 ConstantInfList

. ConstantInfList(value) (function)

Arguments: value – an object.
Returns: An infinite list which has the object value in every position.

10.2.26 FiniteInfList

. FiniteInfList(basePosition, list) (function)
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Arguments: basePosition – an integer, list – a list of length n.
Returns: An infinite list with list[1], . . . ,list[n] in positions basePosition, . . . ,

basePosition+n.
The range of this list is [basePosition,basePosition+n].

10.2.27 MiddleStart

. MiddleStart(list) (operation)

Arguments: list – an infinite list.
Returns: The starting position of the "middle" part of list .

10.2.28 MiddleEnd

. MiddleEnd(list) (operation)

Arguments: list – an infinite list.
Returns: The ending position of the middle part of list .

10.2.29 MiddlePart

. MiddlePart(list) (operation)

Arguments: list – an infinite list.
Returns: The middle part (as a list) of list .

10.2.30 PositivePart

. PositivePart(list) (operation)

Arguments: list – an infinite list.
Returns: The positive part (as a half infinite list) of list .

10.2.31 NegativePart

. NegativePart(list) (operation)

Arguments: list – an infinite list.
Returns: The negative part (as a halft infinite list) of list .

10.2.32 HighestKnownPosition

. HighestKnownPosition(list) (operation)

Arguments: list – an infinite list.
Returns: The highest index i such that the value at position i is known withouth computation.
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10.2.33 LowestKnownPosition

. LowestKnownPosition(list) (operation)

Arguments: list – an infinite list.
Returns: The lowest index i such that the value at position i is known withouth computation.

10.2.34 UpperBound

. UpperBound(list) (operation)

Arguments: list – an infinite list.
Returns: The highest index in the range of the list.

10.2.35 LowerBound

. LowerBound(list) (operation)

Arguments: list – an infinite list.
Returns: The lowest index in the range of the list.

10.2.36 FinitePartAsList

. FinitePartAsList(list, startPos, endPos) (operation)

Arguments: list – an infinite list, startPos – an integer, endPos – an integer.
Returns: A list containing the values of list in positions endPos, . . . ,startPos.
Note that both integers in the input must be within the index range of list .

10.2.37 PositivePartFrom

. PositivePartFrom(list, pos) (operation)

Arguments: list – an infinite list, pos – an integer.
Returns: An infinite list (not a half infinite list) with index range from pos to

UpperBound(list).
The value at position i of the new infinite list is the same as the value at position i of list .

10.2.38 NegativePartFrom

. NegativePartFrom(list, pos) (operation)

Arguments: list – an infinite list, pos – an integer.
Returns: An infinite list (not a half infinite list) with index range from LowerBound(list) to

pos.
The value at position i of the new infinite list is the same as the value at position i of list .
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10.2.39 Shift

. Shift(list, shift) (operation)

Arguments: list – an infinite list, shift – an integer.
Returns: A new infinite list which is list with all values shifted shift positions to the right if

shift is positive, and to the left if shift is negative.

10.2.40 Splice

. Splice(positiveList, negativeList, joinPosition) (operation)

Arguments: positiveList – an infinite list, negativeList – an infinite list, joinPosition –
an integer.

Returns: A new infinite list which is identical to positiveList for indeces greater than
joinPosition and identical to negativeList for indeces smaller than or equal to joinPosition .

10.2.41 InfConcatenation

. InfConcatenation(arg) (function)

Arguments: arg – a number of infinite lists.
Returns: A new infinite list.
If the length of arg is greater than or equal to 2, then the new infinite list consists of the following

parts: It has the positive part of arg[1], and the middle part is the concatenation of the middle parts
of all lists in arg , such that MiddleEnd of the new list is the same as MiddleEnd( arg[1] ). The
negative part of the new list is the negative part of arg[Length(arg)], although shiftet so that it
starts in the correct position.

Example
gap> # we do an InfConcatenation of three lists.
gap> f := function(x) return x; end;;
gap> g := function(x) return x+1; end;;
gap> h := function(x) return x^2; end;;
gap> InfList1 := MakeInfList( 0, [ 10 ], [ "pos", f, false ],
> [ "repeat", [ 10, 15 ] ], false );
<object>
gap> InfList2 := MakeInfList( 0, [ 20 ], [ "pos", g, false ],
> [ "repeat", [ 20, 25 ] ], false );
<object>
gap> InfList3 := MakeInfList( 0, [ 30 ], [ "pos", h, false ],
> [ "repeat", [ 30, 35 ] ], false );
<object>
gap> concList := InfConcatenation( InfList1, InfList2, InfList3 );
<object>
gap> MiddlePart(concList);
[ 30, 20, 10 ]

The newly created concList looks as follows around the middle part:

position · · · 3 2 1 0 −1 −2 −3 −4 −5 · · ·
value · · · 3 2 1 10 20 30 30 35 30 · · ·
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10.2.42 InfList

. InfList(list, func) (operation)

Arguments: list – an infinite list, func – a function which takes an element of the list as argu-
ment.

Returns: An infinite list with the same range as list , where the value at position i is the image
of the value at position i of list under func .

10.2.43 IntegersList

. IntegersList (global variable)

An infinite list with range (−∞,∞) where the value at position i is the number i (that is, a repre-
sentation of the integers).

10.3 Representation of categories

A chain complex consists of objects and morphisms from some category. In QPA, this category will
usually be the category of right modules over some quotient of a path algebra.

10.3.1 IsCat

. IsCat (Category)

The category for categories. A category is a record, storing a number of properties that is specified
within each category. Two categories can be compared using =. Currently, the only implemented
category is the one of right modules over a (quotient of a) path algebra.

10.3.2 CatOfRightAlgebraModules

. CatOfRightAlgebraModules(A) (operation)

Arguments: A – a (quotient of a) path algebra.
Returns: The category mod A.
mod A has several properties, which can be accessed using the . mark. Some of the properties

store functions. All properties are demonstrated in the following example.

• zeroObj – returns the zero module of mod A.

• isZeroObj – returns true if the given module is zero.

• zeroMap – returns the ZeroMapping function.

• isZeroMapping – returns the IsZero test.

• composeMaps – returns the composition of the two given maps.

• ker – returns the Kernel function.
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• im – returns the Image function.

• isExact – returns true if two consecutive maps are exact.
Example

gap> alg;
<algebra-with-one over Rationals, with 7 generators>
gap> # L, M, and N are alg-modules
gap> # f: L --> M and g: M --> N are non-zero morphisms
gap> cat := CatOfRightAlgebraModules(alg);
<cat: right modules over algebra>
gap> cat.zeroObj;
<right-module over <algebra-with-one over Rationals, with 7 generators>>
gap> cat.isZeroObj(M);
false
gap> cat.zeroMap(M,N);
<mapping: <3-dimensional right-module over AlgebraWithOne( Rationals,
[ [(1)*v1], [(1)*v2], [(1)*v3], [(1)*v4], [(1)*a], [(1)*b], [(1)*c] ])> ->

<1-dimensional right-module over AlgebraWithOne( Rationals,
[ [(1)*v1], [(1)*v2], [(1)*v3], [(1)*v4], [(1)*a], [(1)*b], [(1)*c] ] )> >

gap> cat.composeMaps(g,f);
<mapping: <1-dimensional right-module over AlgebraWithOne( Rationals,

[ [(1)*v1], [(1)*v2], [(1)*v3], [(1)*v4], [(1)*a], [(1)*b], [(1)*c]]
-> <1-dimensional right-module over AlgebraWithOne( Rationals,
[ [(1)*v1], [(1)*v2], [(1)*v3], [(1)*v4], [(1)*a], [(1)*b], [(1)*c] ] )> >

gap> cat.ker(g);
<2-dimensional right-module over <algebra-with-one over Rationals,

with 7 generators>>
gap> cat.isExact(g,f);
false

10.4 Making a complex

The most general constructor for complexes is the function Complex (10.4.3). In addition to this, there
are constructors for common special cases:

• ZeroComplex (10.4.4)

• StalkComplex (10.4.6)

• FiniteComplex (10.4.5)

• ShortExactSequence (10.4.7)

10.4.1 IsQPAComplex

. IsQPAComplex (Category)

The category for chain complexes.
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10.4.2 IsZeroComplex

. IsZeroComplex (Category)

Category for zero complexes, subcategory of IsQPAComplex (10.4.1).

10.4.3 Complex

. Complex(cat, baseDegree, middle, positive, negative) (function)

Returns: A newly created chain complex
The first argument, cat is an IsCat (10.3.1) object describing the category to create a chain

complex over.
The rest of the arguments describe the differentials of the complex. These are divided into three

parts: one finite (“middle”) and two infinite (“positive” and “negative”). The positive part contains
all differentials in degrees higher than those in the middle part, and the negative part contains all
differentials in degrees lower than those in the middle part. (The middle part may be placed anywhere,
so the positive part can – despite its name – contain some differentials of negative degree. Conversely,
the negative part can contain some differentials of positive degree.)

The argument middle is a list containing the differentials for the middle part. The argument
baseDegree gives the degree of the first differential in this list. The second differential is placed in
degree baseDegree +1, and so on. Thus, the middle part consists of the degrees

baseDegree , baseDegree +1, . . . baseDegree +Length(middle).

Each of the arguments positive and negative can be one of the following:

• The string "zero", meaning that the part contains only zero objects and zero morphisms.

• A list of the form [ "repeat", L ], where L is a list of morphisms. The part will contain the
differentials in L repeated infinitely many times. The convention for the order of elements in L
is that L[1] is the differential which is closest to the middle part, and L[Length(L)] is farthest
away from the middle part.

• A list of the form [ "pos", f ] or [ "pos", f, store ], where f is a function of two argu-
ments, and store (if included) is a boolean. The function f is used to compute the differentials
in this part. The function f is not called immediately by the Complex constructor, but will be
called later as the differentials in this part are needed. The function call f(C,i) (where C is the
complex and i an integer) should produce the differential in degree i. The function may use C
to look up other differentials in the complex, as long as this does not cause an infinite loop. If
store is true (or not specified), each computed differential is stored, and they are computed in
order from the one closest to the middle part, regardless of which order they are requested in.

• A list of the form [ "next", f, init ], where f is a function of one argument, and init
is a morphism. The function f is used to compute the differentials in this part. For the first
differential in the part (that is, the one closest to the middle part), f is called with init as
argument. For the next differential, f is called with the first differential as argument, and so on.
Thus, the differentials are

f (init), f 2(init), f 3(init), . . .

Each differential is stored when it has been computed.
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• A list of the form [ "next/repeat", f, init ]. This works like the type "next", but may
be automatically converted to type "repeat" later, if it is discovered that the differentials are
repeating.

Example
gap> A := PathAlgebra( Rationals, Quiver( 2, [ [ 1, 2, "a" ] ] ) );;
gap> M := RightModuleOverPathAlgebra( A, [ 2, 2 ], [ [ "a", [ [ 1, 0 ], [ 0, 1 ] ] ] ] );;
gap> d := RightModuleHomOverAlgebra( M, M, [ [ [ 0, 0 ], [ 1, 0 ] ], [ [ 0, 0 ], [ 1, 0 ] ] ] );;
gap> IsZero( d * d );
true
gap> C := Complex( CatOfRightAlgebraModules( A ), 0, [ d ],
> [ "next/repeat", function( x ) return d; end, d ], "zero" );
--- -> 0:(2,2) -> -1:(2,2) -> 0
gap> ObjectOfComplex( C, 3 );
<[ 2, 2 ]>
gap> C;
--- -> [ 1:(2,2) -> ] 0:(2,2) -> -1:(2,2) -> 0

10.4.4 ZeroComplex

. ZeroComplex(cat) (function)

Returns: A newly created zero complex
This function creates a zero complex (a complex consisting of only zero objects and zero mor-

phisms) over the category described by the IsCat (10.3.1) object cat .

10.4.5 FiniteComplex

. FiniteComplex(cat, baseDegree, differentials) (function)

Returns: A newly created complex
This function creates a complex where all but finitely many objects are the zero object.
The argument cat is an IsCat (10.3.1) object describing the category to create a chain complex

over.
The argument differentials is a list of morphisms. The argument baseDegree gives the

degree for the first differential in this list. The subsequent differentials are placed in degrees
baseDegree +1, and so on.

This means that the differentials argument specifies the differentials in degrees

baseDegree , baseDegree +1, . . . baseDegree +Length(differentials);

and thus implicitly the objects in degrees

baseDegree −1, baseDegree , . . . baseDegree +Length(differentials).

All other objects in the complex are zero.
Example

gap> # L, M and N are modules over the same algebra A
gap> # cat is the category mod A
gap> # f: L --> M and g: M --> N maps
gap> C := FiniteComplex(cat, 1, [g,f]);
0 -> 2:(1,0) -> 1:(2,2) -> 0:(1,1) -> 0
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10.4.6 StalkComplex

. StalkComplex(cat, obj, degree) (function)

Arguments: cat – a category, obj – an object in cat , degree – the degree obj should be placed
in.

Returns: a newly created complex.
The new complex is a stalk complex with obj in position degree , and zero elsewhere.

Example
gap> Ms := StalkComplex(cat, M, 3);
0 -> 3:(2,2) -> 0

10.4.7 ShortExactSequence

. ShortExactSequence(cat, f, g) (function)

Arguments: cat – a category, f and g – maps in cat , where f : A→ B and g : B→C.
Returns: a newly created complex.
If the sequence 0→ A→ B→C→ 0 is exact, this complex (with B in degree 0) is returned.

Example
gap> ses := ShortExactSequence(cat, f, g);
0 -> 1:(0,0,1,0) -> 0:(0,1,1,1) -> -1:(0,1,0,1) -> 0

10.5 Information about a complex

10.5.1 CatOfComplex

. CatOfComplex(C) (attribute)

Returns: The category the objects of the complex C live in.

10.5.2 ObjectOfComplex

. ObjectOfComplex(C, i) (operation)

Arguments: C – a complex, i – an integer.
Returns: The object at position i in the complex.

10.5.3 DifferentialOfComplex

. DifferentialOfComplex(C, i) (operation)

Arguments: C – a complex, i – an integer.
Returns: The map in C between objects at positions i and i−1.
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10.5.4 DifferentialsOfComplex

. DifferentialsOfComplex(C) (attribute)

Arguments: C – a complex
Returns: The differentials of the complex, stored as an IsInfList object.

10.5.5 CyclesOfComplex

. CyclesOfComplex(C, i) (operation)

Arguments: C – a complex, i – an integer.
Returns: The i-cycle of the complex, that is the subobject Ker(di) of ObjectOfComplex(C,i).

10.5.6 BoundariesOfComplex

. BoundariesOfComplex(C, i) (operation)

Arguments: C – a complex, i – an integer.
Returns: The i-boundary of the complex, that is the subobject Im(di+1) of

ObjectOfComplex(C,i).

10.5.7 HomologyOfComplex

. HomologyOfComplex(C, i) (operation)

Arguments: C – a complex, i – an integer.
Returns: The ith homology of the complex, that is, Ker(di)/Im(di+1).
Note: this operation is currently not available. When working in the category of right kQ/I-

modules, it is possible to "cheat" and use the following procedure to compute the homology of a
complex:

Example
gap> C;
0 -> 4:(0,1) -> 3:(1,0) -> 2:(2,2) -> 1:(1,1) -> 0:(2,2) -> 0
gap> # Want to compute the homology in degree 2
gap> f := DifferentialOfComplex(C,3);
<mapping: <1-dimensional right-module over AlgebraWithOne( Rationals,

[ [(1)*v1], [(1)*v2], [(1)*a], [(1)*b] ] )> ->
< 4-dimensional right-module over AlgebraWithOne( Rationals,
[ [(1)*v1], [(1)*v2], [(1)*a], [(1)*b] ] )> >

gap> g := KernelInclusion(DifferentialOfComplex(C,2));
<mapping: <2-dimensional right-module over AlgebraWithOne( Rationals,
[ [(1)*v1], [(1)*v2], [(1)*a], [(1)*b] ] )> ->
< 4-dimensional right-module over AlgebraWithOne( Rationals,
[ [(1)*v1], [(1)*v2], [(1)*a], [(1)*b] ] )> >

gap> # We know that Im f is included in Ker g, so can find the
gap> # lifting morphism h from C_3 to Ker g.
gap> h := LiftingInclusionMorphisms(g,f);

<mapping: <1-dimensional right-module over AlgebraWithOne( Rationals,
[ [(1)*v1], [(1)*v2], [(1)*a], [(1)*b] ] )> ->
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< 2-dimensional right-module over AlgebraWithOne( Rationals,
[ [(1)*v1], [(1)*v2], [(1)*a], [(1)*b] ] )> >

gap> # The cokernel of h is Ker g / Im f
gap> Homology := CoKernel(h);
<1-dimensional right-module over <algebra-with-one over Rationals, with

4 generators>>

10.5.8 IsFiniteComplex

. IsFiniteComplex(C) (operation)

Arguments: C – a complex.
Returns: true if C is a finite complex, false otherwise.

10.5.9 UpperBound

. UpperBound(C) (operation)

Arguments: C – a complex.
Returns: If it exists: The smallest integer i such that the object at position i is non-zero, but for

all j > i the object at position j is zero.
If C is not a finite complex, the operation will return fail or infinity, depending on how C was

defined.

10.5.10 LowerBound

. LowerBound(C) (operation)

Arguments: C – a complex.
Returns: If it exists: The greatest integer i such that the object at position i is non-zero, but for

all j < i the object at position j is zero.
If C is not a finite complex, the operation will return fail or negative infinity, depending on how C

was defined.

10.5.11 LengthOfComplex

. LengthOfComplex(C) (operation)

Arguments: C – a complex.
Returns: the length of the complex.
The length is defined as follows: If C is a zero complex, the length is zero. If C is a finite complex,

the lenght is the upper bound – the lower bound + 1. If C is an inifinite complex, the lenght is infinity.

10.5.12 HighestKnownDegree

. HighestKnownDegree(C) (operation)



QPA 130

Arguments: C – a complex.
Returns: The greatest integer i such that the object at position i is known (or computed).
For a finite complex, this will be infinity.

10.5.13 LowestKnownDegree

. LowestKnownDegree(C) (operation)

Arguments: C – a complex.
Returns: The smallest integer i such that the object at position i is known (or computed).
For a finite complex, this will be negative infinity.

Example
gap> C;
0 -> 4:(0,1) -> 3:(1,0) -> 2:(2,2) -> 1:(1,1) -> 0:(2,2) -> 0
gap> IsFiniteComplex(C);
true
gap> UpperBound(C);
4
gap> LowerBound(C);
0
gap> LengthOfComplex(C);
5
gap> HighestKnownDegree(C);
+inf
gap> LowestKnownDegree(C);
-inf

10.5.14 IsExactSequence

. IsExactSequence(C) (property)

Arguments: C – a complex.
Returns: true if C is exact at every position.
If the complex is not finite and not repeating, the function fails.

10.5.15 IsExactInDegree

. IsExactInDegree(C, i) (operation)

Arguments: C – a complex, i – an integer.
Returns: true if C is exact at position i .

10.5.16 IsShortExactSequence

. IsShortExactSequence(C) (property)

Arguments: C – a complex.
Returns: true if C is exact and of the form

. . .→ 0→ A→ B→C→ 0→ . . .
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This could be positioned in any degree (as opposed to the construction of a short exact sequence,
where B will be put in degree zero).

Example
gap> C;
0 -> 4:(0,1) -> 3:(1,0) -> 2:(2,2) -> 1:(1,1) -> 0:(2,2) -> 0
gap> IsExactSequence(C);
false
gap> IsExactInDegree(C,1);
true
gap> IsExactInDegree(C,2);
false

10.5.17 ForEveryDegree

. ForEveryDegree(C, func) (operation)

Arguments: C – a complex, func – a function operating on two consecutive maps.
Returns: true if func returns true for any two consecutive differentials, fail if this can not be

decided, false otherwise.

10.6 Transforming and combining complexes

10.6.1 Shift

. Shift(C, i) (operation)

Arguments: C – a complex, i – an integer.
Returns: A new complex, which is a shift of C .
If i > 0, the complex is shifted to the left. If i < 0, the complex is shifted to the right. Note that

shifting might change the differentials: In the shifted complex, dnew is defined to be (−1)idold .
Example

gap> C;
0 -> 4:(0,1) -> 3:(1,0) -> 2:(2,2) -> 1:(1,1) -> 0:(2,2) -> 0
gap> Shift(C,1);
0 -> 3:(0,1) -> 2:(1,0) -> 1:(2,2) -> 0:(1,1) -> -1:(2,2) -> 0
gap> D := Shift(C,-1);
0 -> 5:(0,1) -> 4:(1,0) -> 3:(2,2) -> 2:(1,1) -> 1:(2,2) -> 0
gap> dc := DifferentialOfComplex(C,3)!.maps;
[ [ [ 1, 0 ] ], [ [ 0, 0 ] ] ]
gap> dd := DifferentialOfComplex(D,4)!.maps;
[ [ [ -1, 0 ] ], [ [ 0, 0 ] ] ]
gap> MatricesOfPathAlgebraMatModuleHomomorphism(dc);
[ [ [ 1, 0 ] ], [ [ 0, 0 ] ] ]
gap> MatricesOfPathAlgebraMatModuleHomomorphism(dd);
[ [ [ -1, 0 ] ], [ [ 0, 0 ] ] ]
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10.6.2 ShiftUnsigned

. ShiftUnsigned(C, i) (operation)

Arguments: C – a complex, i – an integer.
Returns: A new complex, which is a shift of C .
Does the same as Shift, except it does not change the sign of the differential. Although this is a

non-mathematical definition of shift, it is still useful for technical purposes, when manipulating and
creating complexes.

10.6.3 YonedaProduct

. YonedaProduct(C, D) (operation)

Arguments: C , D – complexes.
Returns: The Yoneda product of the two complexes, which is a complex.
To compute the Yoneda product, C and D must be such that the object in degree LowerBound(C)

equals the object in degree UpperBound(D), that is

. . .→Ci+1→Ci→ A→ 0→ . . .

. . .→ 0→ A→ D j→ D j−1→ . . .

The product is of this form:

. . .→Ci+1→Ci→ D j→ D j−1→ . . .

where the map Ci→ D j is the composition of the maps Ci→ A and A→ D j. Also, the object D j is in
degree j.

Example
gap> C2;
0 -> 4:(0,1) -> 3:(1,0) -> 2:(2,2) -> 1:(1,1) -> 0:(0,0) -> 0
gap> C3;
0 -> -1:(1,1) -> -2:(2,2) -> -3:(1,1) -> 0
gap> YonedaProduct(C2,C3);
0 -> 1:(0,1) -> 0:(1,0) -> -1:(2,2) -> -2:(2,2) -> -3:(1,1) -> 0

10.6.4 BrutalTruncationBelow

. BrutalTruncationBelow(C, i) (operation)

Arguments: C – a complex, i – an integer.
Returns: A newly created complex.
Replace all objects with degree j < i with zero. The differentials affected will also become zero.
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10.6.5 BrutalTruncationAbove

. BrutalTruncationAbove(C, i) (operation)

Arguments: C – a complex, i – an integer.
Returns: A newly created complex.
Replace all objects with degree j > i with zero. The differentials affected will also become zero.

10.6.6 BrutalTruncation

. BrutalTruncation(C, i, j) (operation)

Arguments: C – a complex, i, j – integers.
Returns: A newly created complex.
Brutally truncates in both ends. The integer arguments must be ordered such that i > j .

10.6.7 SyzygyTruncation

. SyzygyTruncation(C, i) (operation)

Arguments: C – a complex, i – an integer.
Returns: A newly created complex.
Replace the object in degree i with the kernel of di, and di+1 with the natural inclusion. All objects

in degree j > i+1 are replaced with zero.

10.6.8 CosyzygyTruncation

. CosyzygyTruncation(C, i) (operation)

Arguments: C – a complex, i – an integer.
Returns: A newly created complex.
Replace the object in degree i−2 with the cokernel of di, and di−1 with the natural projection. All

objects in degree j < i−2 are replaced with zero.

10.6.9 SyzygyCosyzygyTruncation

. SyzygyCosyzygyTruncation(C, i, j) (operation)

Arguments: C – a complex, i – an integer.
Returns: A newly created complex.
Performs both the above truncations. The integer arguments must be ordered such that i > j .

10.7 Chain maps

An IsChainMap (10.7.1) object represents a chain map between two complexes over the same cate-
gory.
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10.7.1 IsChainMap

. IsChainMap (Category)

The category for chain maps.

10.7.2 ChainMap

. ChainMap(source, range, basePosition, middle, positive, negative) (function)

Arguments: source , range – complexes, basePosition – an integer, middle – a list of mor-
phisms, positive – a list or the string "zero", negative – a list or the string "zero".

Returns: A newly created chain map
The arguments source and range are the complexes which the new chain map should map be-

tween.
The rest of the arguments describe the individual morphisms which constitute the chain map, in a

similar way to the last four arguments to the Complex (10.4.3) function.
The morphisms of the chain map are divided into three parts: one finite (“middle”) and two infinite

(“positive” and “negative”). The positive part contains all morphisms in degrees higher than those in
the middle part, and the negative part contains all morphisms in degrees lower than those in the middle
part. (The middle part may be placed anywhere, so the positive part can – despite its name – contain
some morphisms of negative degree. Conversely, the negative part can contain some morphisms of
positive degree.)

The argument middle is a list containing the morphisms for the middle part. The argument
baseDegree gives the degree of the first morphism in this list. The second morphism is placed in
degree baseDegree +1, and so on. Thus, the middle part consists of the degrees

baseDegree , baseDegree +1, . . . baseDegree +Length(middle)−1.

Each of the arguments positive and negative can be one of the following:

• The string "zero", meaning that the part contains only zero morphisms.

• A list of the form [ "repeat", L ], where L is a list of morphisms. The part will contain the
morphisms in L repeated infinitely many times. The convention for the order of elements in L
is that L[1] is the morphism which is closest to the middle part, and L[Length(L)] is farthest
away from the middle part. (Using this only makes sense if the objects of both the source and
range complex repeat in a compatible way.)

• A list of the form [ "pos", f ] or [ "pos", f, store ], where f is a function of two argu-
ments, and store (if included) is a boolean. The function f is used to compute the morphisms
in this part. The function f is not called immediately by the ChainMap constructor, but will be
called later as the morphisms in this part are needed. The function call f(M,i) (where M is the
chain map and i an integer) should produce the morphism in degree i. The function may use M
to look up other morphisms in the chain map (and to access the source and range complexes), as
long as this does not cause an infinite loop. If store is true (or not specified), each computed
morphism is stored, and they are computed in order from the one closest to the middle part,
regardless of which order they are requested in.
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• A list of the form [ "next", f, init ], where f is a function of one argument, and init is a
morphism. The function f is used to compute the morphisms in this part. For the first morphism
in the part (that is, the one closest to the middle part), f is called with init as argument. For the
next morphism, f is called with the first morphism as argument, and so on. Thus, the morphisms
are

f (init), f 2(init), f 3(init), . . .

Each morphism is stored when it has been computed.

10.7.3 ZeroChainMap

. ZeroChainMap(source, range) (function)

Returns: A newly created zero chain map
This function creates a zero chain map (a chain map in which every morphism is zero) from the

complex source to the complex range .

10.7.4 FiniteChainMap

. FiniteChainMap(source, range, baseDegree, morphisms) (function)

Returns: A newly created chain map
This function creates a complex where all but finitely many morphisms are zero.
The arguments source and range are the complexes which the new chain map should map be-

tween.
The argument morphisms is a list of morphisms. The argument baseDegree gives the degree for

the first morphism in this list. The subsequent morphisms are placed in degrees baseDegree +1, and
so on.

This means that the morphisms argument specifies the morphisms in degrees

baseDegree , baseDegree +1, . . . baseDegree +Length(morphisms)−1.

All other morphisms in the chain map are zero.

10.7.5 ComplexAndChainMaps

. ComplexAndChainMaps(sourceComplexes, rangeComplexes, basePosition, middle,
positive, negative) (function)

Arguments: sourceComplexes – a list of complexes, rangeComplexes – a list of complexes,
basePosition – an integer, middle – a list of morphisms, positive – a list or the string "zero",
negative – a list or the string "zero".

Returns: A list consisting of a newly created complex, and one or more newly created chain
maps.

This is a combined constructor to make one complex and a set of chain maps at the same time. All
the chain maps will have the new complex as either source or range.

The argument sourceComplexes is a list of the complexes to be sources of the chain maps which
have the new complex as range. The argument rangeComplexes is a list of the complexes to be
ranges of the chain maps which have the new complex as source.

Let S and R stand for the lengths of the lists sourceComplexes and rangeComplexes , respec-
tively. Then the number of new chain maps which are created is S+R.
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The last four arguments describe the individual differentials of the new complex, as well as the
inidividual morphisms which constitute each of the new chain maps. These arguments are treated in
a similar way to the last four arguments to the Complex (10.4.3) and ChainMap (10.7.2) constructors.
In those constructors, the last four arguments describe, for each degree, how to get the differential or
morphism for that degree. Here, we for each degree need both a differential for the complex, and one
morphism for each chain map. So for each degree i, we will have a list

Li = [di,m1
i , . . . ,m

S
i ,n

1
i , . . . ,n

R
i ],

where di is the differential for the new complex in degree i, m j
i is the morphism in degree i of the chain

map from sourceComplexes[j] to the new complex, and n j
i is the morphism in degree i of the chain

map from the new complex to rangeComplexes[j].
The degrees of the new complex and chain maps are divided into three parts: one finite (“middle”)

and two infinite (“positive” and “negative”). The positive part contains all degrees higher than those
in the middle part, and the negative part contains all degrees lower than those in the middle part.

The argument middle is a list containing the lists Li for the middle part. The argument
baseDegree gives the degree of the first morphism in this list. The second morphism is placed in
degree baseDegree +1, and so on. Thus, the middle part consists of the degrees

baseDegree , baseDegree +1, . . . baseDegree +Length(middle)−1.

Each of the arguments positive and negative can be one of the following:

• The string "zero", meaning that the part contains only zero morphisms.

• A list of the form [ "repeat", L ], where L is a list of morphisms. The part will contain the
morphisms in L repeated infinitely many times. The convention for the order of elements in L
is that L[1] is the morphism which is closest to the middle part, and L[Length(L)] is farthest
away from the middle part. (Using this only makes sense if the objects of both the source and
range complex repeat in a compatible way.)

• A list of the form [ "pos", f ] or [ "pos", f, store ], where f is a function of two argu-
ments, and store (if included) is a boolean. The function f is used to compute the morphisms
in this part. The function f is not called immediately by the ChainMap constructor, but will be
called later as the morphisms in this part are needed. The function call f(M,i) (where M is the
chain map and i an integer) should produce the morphism in degree i. The function may use M
to look up other morphisms in the chain map (and to access the source and range complexes), as
long as this does not cause an infinite loop. If store is true (or not specified), each computed
morphism is stored, and they are computed in order from the one closest to the middle part,
regardless of which order they are requested in.

• A list of the form [ "next", f, init ], where f is a function of one argument, and init is a
morphism. The function f is used to compute the morphisms in this part. For the first morphism
in the part (that is, the one closest to the middle part), f is called with init as argument. For the
next morphism, f is called with the first morphism as argument, and so on. Thus, the morphisms
are

f (init), f 2(init), f 3(init), . . .

Each morphism is stored when it has been computed.
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The return value of the ComplexAndChainMaps constructor is a list

[C,M1, . . . ,MS,N1, . . . ,NR],

where C is the new complex, M1, . . . ,MS are the new chain maps with C as range, and N1, . . . ,NR are
the new chain maps with C as source.

10.7.6 MorphismOfChainMap

. MorphismOfChainMap(M, i) (operation)

Arguments: M – a chain map, i – an integer.
Returns: The morphism at position i in the chain map.

10.7.7 MorphismsOfChainMap

. MorphismsOfChainMap(M) (attribute)

Arguments: M – a chain map.
Returns: The morphisms of the chain map, stored as an IsInfList (10.2.4) object.

10.7.8 ComparisonLifting

. ComparisonLifting(f, PC, EC) (operation)

Arguments: f – a map between modules M and N, PC – a chain complex, EC – a chain complex.
Returns: The map f lifted to a chain map from PC to EC .
The complex PC must have M in some fixed degree i, it should be bounded with only zero objects

in degrees smaller than i, and it should have only projective objects in degrees greater than i (or
projective objects in degrees [i+1, j] and zero in degrees greater than j). The complex EC should also
have zero in degrees smaller than i, it should have N in degree i and it should be exact for all degrees.
The returned chain map has f in degree i.

10.7.9 ComparisonLiftingToProjectiveResolution

. ComparisonLiftingToProjectiveResolution(f) (operation)

Arguments: f – a map between modules M and N.
Returns: The map f lifted to a chain map from the projective resolution of M to the projective

resolution of N.
The returned chain map has f in degree −1 (the projective resolution of a module includes the

module itself in degree −1).

10.7.10 MappingCone

. MappingCone(f) (operation)
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Arguments: f – a chain map between chain complexes A and B.
Returns: A list with the mapping cone of f and the inclusion of B into the cone, and the projection

of the cone onto A[−1].
Example

gap> # Constructs a quiver and a quotient of a path algebra
gap> Q := Quiver( 4, [ [1,2,"a"], [2,3,"b"], [3,4,"c"] ] );;
gap> PA := PathAlgebra( Rationals, Q );;
gap> rels := [ PA.a*PA.b ];;
gap> gb := GBNPGroebnerBasis( rels, PA );;
gap> I := Ideal( PA, gb );;
gap> grb := GroebnerBasis( I, gb );;
gap> alg := PA/I;;
gap>
gap> # Two modules M and N, and a map between them
gap> M := RightModuleOverPathAlgebra( alg, [0,1,1,0], [["b", [[1]] ]] );;
gap> N := RightModuleOverPathAlgebra( alg, [0,1,0,0], [] );;
gap> f := RightModuleHomOverAlgebra(M, N, [ [[0]],[[1]],[[0]],[[0]] ]);;
gap>
gap> # Lifts f to a map between the projective resolutions of M and N
gap> lf := ComparisonLiftingToProjectiveResolution(f);
<chain map>
gap>
gap> # Computes the mapping cone of the chain map
gap> H := MappingCone(lf);
[ --- -> -1:(0,1,0,0) -> ---, <chain map>, <chain map> ]
gap> cone := H[1];
--- -> -1:(0,1,0,0) -> ---
gap> ObjectOfComplex(Source(lf),0);
<[ 0, 1, 1, 1 ]>
gap> ObjectOfComplex(Range(lf),1);
<[ 0, 0, 1, 1 ]>
gap> ObjectOfComplex(cone,1);
<[ 0, 1, 2, 2 ]>
gap> Source(H[2]) = Range(lf);
true
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Projective resolutions and the bounded
derived category

What is implemented so far for working with the bounded derived category Db(modA). We use the
isomorphism Db(modA)∼=K −,b(projA), and will hence need a way to describe complexes where all
objectives are projective (or, dually, injective).

11.1 Projective and injective complexes

11.1.1 InjectiveResolution

. InjectiveResolution(M) (operation)

Arguments: M – a module.
Returns: The injective resolution of M with M in degree −1.

11.1.2 IsProjectiveComplex

. IsProjectiveComplex(C) (property)

Arguments: C – a complex.
Returns: true if C is either a finite complex of projectives or an infinite complex of projectives

constructed as a projective resolution (ProjectiveResolutionOfComplex (11.2.1)), false otherwise.
A complex for which this property is true, will be printed in a different manner than ordinary

complexes. Instead of writing the dimension vector of the objects in each degree, the indecomposable
direct summands are listed (for instance P1, P2 . . . , where Pi is the indecomposable projective module
corresponding to vertex i of the quiver). Note that if a complex is both projective and injective, it is
printed as a projective complex.

11.1.3 IsInjectiveComplex

. IsInjectiveComplex(C) (property)

Arguments: C – a complex.
Returns: true if C is either a finite complex of injectives or an infinite complex of injectives
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constructed as DHomA(−,A) of a projective complex (ProjectiveToInjectiveComplex (11.2.2)),
false otherwise.

A complex for which this property is true, will be printed in a different manner than ordinary
complexes. Instead of writing the dimension vector of the objects in each degree, the indecomposable
direct summands are listed (for instance I1, I2 . . . , where Ii is the indecomposable injective module
corresponding to vertex i of the quiver). Note that if a complex is both projective and injective, it is
printed as a projective complex.

11.1.4 ProjectiveResolution

. ProjectiveResolution(M) (operation)

Arguments: M – a module.
Returns: The projective resolution of M with M in degree −1.

11.2 The bounded derived category

Let Db(modA) denote the bounded derived category. If C is an element of Db(modA), that is, a
bounded complex of A-modules, there exists a projective resolution P of C which is a complex of
projective A-modules quasi-isomorphic to C. Moreover, there exists such a P with the following
properties:

• P is minimal (in the homotopy category).

• C is bounded, so Ci = 0 for i < k for a lower bound k and Ci = 0 for i > j for an upper bound j.
Then Pi = 0 for i < k, and P is exact in degree i for i > j.

The function ProjectiveResolutionOfComplex computes such a projective resolution of any
bounded complex. If A has finite global dimension, then Db(modA) has AR-triangles, and there
exists an algorithm for computing the AR-translation of a complex C ∈Db(modA):

• Compute a projective resolution P′ of C.

• Shift P′ one degree to the right.

• Compute I = DHomA(P′,A) to get a complex of injectives.

• Compute a projective resolution P of I.

Then P is the AR-translation of C, sometimes written τ(C). The following documents the QPA func-
tions for working with complexes in the derived category.

11.2.1 ProjectiveResolutionOfComplex

. ProjectiveResolutionOfComplex(C) (operation)

Arguments: C – a finite complex.
Returns: A projective complex P which is the projective resolution of C, as described in the

introduction to this section.
If the algebra has infinite global dimension, the projective resolution of C could possibly be infi-

nite.
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11.2.2 ProjectiveToInjectiveComplex

. ProjectiveToInjectiveComplex(P) (operation)

. ProjectiveToInjectiveFiniteComplex(P) (operation)

Arguments: P – a bounded below projective complex.
Returns: An injective complex I = DHomA(P,A).
P and I will always have the same length. Especially, if P is unbounded above, then so is

I. If P is a finite complex (that is; LengthOfComplex(P) is an integer) then the simpler method
ProjectiveToInjectiveFiniteComplex is used.

11.2.3 TauOfComplex

. TauOfComplex(C) (operation)

Arguments: C – a finite complex over an algebra of finite global dimension.
Returns: A projective complex P which is the AR-translation of C .
This function only works when the algebra has finite global dimension. It will always assume that

both the projective resolutions computed are finite.

11.2.4 Example

The following example illustrates the above mentioned functions and properties. Note that
both ProjectiveResolutionOfComplex and ProjectiveToInjectiveComplex return complexes
with a nonzero positive part, whereas TauOfComplex always returns a complex for which
IsFiniteComplex returns true. Also note that after the complex C in the example is found to have
the IsInjectiveComplex property, the printing of the complex changes.

The algebra in the example is kQ/I, where Q is the quiver 1−→ 2−→ 3 and I is generated by the
composition of the arrows. We construct C as the stalk complex with the injective I1 in degree 0.

Example
gap> alg;
<Rationals[<quiver with 3 vertices and 2 arrows>]/
<two-sided ideal in <Rationals[<quiver with 3 vertices and 2 arrows>]>,

(1 generators)>>
gap> cat := CatOfRightAlgebraModules(alg);
<cat: right modules over algebra>
gap> C := StalkComplex(cat, IndecInjectiveModules(alg)[1], 0);
0 -> 0:(1,0,0) -> 0
gap> ProjC := ProjectiveResolutionOfComplex(C);
--- -> 0: P1 -> 0
gap> InjC := ProjectiveToInjectiveComplex(ProjC);
--- -> 1: I2 -> 0: I1 -> 0
gap> TauC := TauOfComplex(C);
0 -> 1: P3 -> 0
gap> IsProjectiveComplex(C);
false
gap> IsInjectiveComplex(C);
true
gap> C;
0 -> 0: I1 -> 0
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11.2.5 StarOfMapBetweenProjectives

. StarOfMapBetweenProjectives(f, list_i, list_j) (operation)

. StarOfMapBetweenIndecProjectives(f, i, list_j) (operation)

. StarOfMapBetweenDecompProjectives(f, list_i, list_j) (operation)

Arguments: f – a map between to projective modules P=
⊕

Pi and Q=
⊕

Q j, each of which were
constructed as direct sums of indecomposable projective modules; list_i – describes the summands
of P; list_j – describes the summands of Q. If P = P1⊕P3⊕P3 (where Pi is the indecomposable
projective representation in vertex i), then list_i is [1,3,3].

Returns: The map f ∗ = HomA( f ,A) : HomA(Q,A)→HomA(P,A) in Aop (where A is the original
algebra).

The function StarOfMapBetweenProjectives is supposed to be called from within the
ProjectiveToInjectiveComplex method, and might not do as expected when called from some-
where else.

The other similarly named functions are called from within the first.
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Combinatorial representation theory

12.1 Introduction

Here we introduce the implementation of the software package CREP initially designed for MAPLE.

12.2 Different unit forms

12.2.1 IsUnitForm

. IsUnitForm (Category)

The category for unit forms, which we identify with symmetric integral matrices with 2 along the
diagonal.

12.2.2 BilinearFormOfUnitForm

. BilinearFormOfUnitForm(B) (attribute)

Arguments: B – a unit form.
Returns: the bilinear form associated to a unit form B .
The bilinear form associated to the unitform B given by a matrix B is defined for two vectors x and

y as: x∗B∗ yT .

12.2.3 IsWeaklyNonnegativeUnitForm

. IsWeaklyNonnegativeUnitForm(B) (property)

Arguments: B – a unit form.
Returns: true is the unitform B is weakly non-negative, otherwise false.
The unit form B is weakly non-negative is B(x,y)≥ 0 for all x 6= 0 in Zn, where n is the dimension

of the square matrix associated to B .
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12.2.4 IsWeaklyPositiveUnitForm

. IsWeaklyPositiveUnitForm(B) (property)

Arguments: B – a unit form.
Returns: true is the unitform B is weakly positive, otherwise false.
The unit form B is weakly positive if B(x,y) > 0 for all x 6= 0 in Zn, where n is the dimension of

the square matrix associated to B .

12.2.5 PositiveRootsOfUnitForm

. PositiveRootsOfUnitForm(B) (attribute)

Arguments: B – a unit form.
Returns: the positive roots of a unit form, if the unit form is weakly positive. If they have not

been computed, an error message will be returned saying "no method found!".
This attribute will be attached to B when IsWeaklyPositiveUnitForm is applied to B and it is

weakly positive.

12.2.6 QuadraticFormOfUnitForm

. QuadraticFormOfUnitForm(B) (attribute)

Arguments: B – a unit form.
Returns: the quadratic form associated to a unit form B .
The quadratic form associated to the unitform B given by a matrix B is defined for a vector x as:

1
2 x∗B∗ xT .

12.2.7 SymmetricMatrixOfUnitForm

. SymmetricMatrixOfUnitForm(B) (attribute)

Arguments: B – a unit form.
Returns: the symmetric integral matrix which defines the unit form B .

12.2.8 TitsUnitFormOfAlgebra

. TitsUnitFormOfAlgebra(A) (operation)

Arguments: A – a finite dimensional (quotient of a) path algebra (by an admissible ideal).
Returns: the Tits unit form associated to the algebra A .
This function returns the Tits unitform associated to a finite dimensional quotient of a path al-

gebra by an admissible ideal or path algebra, given that the underlying quiver has no loops or min-
imal relations that starts and ends in the same vertex. That is, then it returns a symmetric matrix
B such that for x = (x1, ...,xn)(1/2) ∗ (x1, ...,xn)B(x1, ...,xn)

T = ∑
n
i=1 x2

i −∑i, j dimk Ext1(Si,S j)xix j +

∑i, j dimk Ext2(Si,S j)xix j, where n is the number of vertices in Q.
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12.2.9 EulerBilinearFormOfAlgebra

. EulerBilinearFormOfAlgebra(A) (operation)

Arguments: A – a finite dimensional (quotient of a) path algebra (by an admissible ideal).
Returns: the Euler (non-symmetric) bilinear form associated to the algebra A .
This function returns the Euler (non-symmetric) bilinear form associated to a finite dimensional

(basic) quotient of a path algebra A . That is, it returns a bilinear form (function) defined by
f (x,y) = x∗CartanMatrix(A)(−1) ∗ y
It makes sense only in case A is of finite global dimension.

12.2.10 UnitForm

. UnitForm(B) (operation)

Arguments: B – an integral matrix.
Returns: the unit form in the category IsUnitForm (12.2.1) associated to the matrix B .
The function checks if B is a symmetric integral matrix with 2 along the diagonal, and returns

an error message otherwise. In addition it sets the attributes, BilinearFormOfUnitForm (12.2.2),
QuadraticFormOfUnitForm (12.2.6) and SymmetricMatrixOfUnitForm (12.2.7).
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Degeneration order for modules in finite
type

13.1 Introduction

This is an implementation of several tools for computing degeneration order for modules over algebras
of finite type. It can be treated as a "subpackage" of QPA and used separately since the functions do
not use any of QPA routines so far.
This subpackage has a little bit different philosophy than QPA in general. Namely, the "starting point"
is not an algebra A defined by a Gabriel quiver with relations but an Auslander-Reiten (A-R) quiver
of the category mod A, defined by numerical data (see ARQuiverNumerical (13.3.1)). All the inde-
composables (actually their isoclasses) have unique natural numbers established at the beginning, by
invoking ARQuiverNumerical (13.3.1). This function should be used before all further computations.
An arbitrary module M is identified by its multiplicity vector (the sequence of multiplicities of all the
indecomposables appearing in a direct sum decomposition of M).
Here we always assume that A is an algebra of finite representation type. Note that in this case
deg-order coincide with Hom-order, and this fact is used in the algorithms of this subpackage. The
main goal of this subpackage is to give tools for testing a deg-order relation between two A-modules
and determining (direct) deg-order predecessors and successors (see 13.2 for basic definitions from
this theory). As a side effect one can also obtain the dimensions of Hom-spaces between arbitrary
modules (and in particular the dimension vectors of indecomposable modules).

13.2 Basic definitions

Here we briefly recall the basic notions we use in all the functions from this chapter.
Let A be an algebra. We say that for two A-modules M and N of the same dimension vector d, M

degenerates to N (N is a degeneration of M) iff N belongs to a Zariski closure of the orbit of M in a
variety modA(d) of A-modules of dimension vector d. If it is the case, we write M <= N. It is well
known that

(1) The relation <= is a partial order on the set of isomorphism classes of A-modules of
dimension vector d.

(2) If A is an algebra of finite representation type, <= coincides with so-called Hom-order
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<=Hom, defined as follows: M <=Hom N iff [X ,M] <= [X ,N] for all indecomposable A-modules X,
where by [Y,Z] we denote always the dimension of a Hom-space between Y and Z.

Further, if M < N (i.e. M <= N and M is not isomorphic to N), we say that M is a deg-order
predecessor of N (resp. N is a deg-order successor of M). Moreover, we say that M is a direct deg-
order predecessor of N if M < N and there is no M’ such that M < M′ < N (similarly for successors).

13.3 Defining Auslander-Reiten quiver in finite type

13.3.1 ARQuiverNumerical

. ARQuiverNumerical(ind, proj, list) (function)

. ARQuiverNumerical(name) (function)

. ARQuiverNumerical(name, param1) (function)

. ARQuiverNumerical(name, param1, param2) (function)

Arguments: ind - number of indecomposable modules in our category;
proj - number of indecomposable projective modules in our category;
list - list of lists containing description of meshes in A-R quiver defined as follows:
list [i] = description of mesh ending in vertex (indec. mod.) number i having the shape [a1,...,an,t]
where
a1,...,an = numbers of direct predecessors of i in A-R quiver;
t = number of tau(i), or 0 if tau i does not exist (iff i is projective).
In particular if i is projective list [i]=[a1,...,an,0] where a1,...,an are indec. summands of rad(i).

OR:
list second version - if the first element of list is a string "orbits" then the remaining elements
should provide an alternative (shorter than above) description of A-R quiver as follows.
list [2] is a list of descriptions of orbits identified by chosen representatives. We assume that in case
an orbit is non-periodic, then a projective module is its representative. Each element of list list [2] is
a description of i-th orbit and has the shape:
[l, [i1,t1], ... , [is,ts]] where
l = length of orbit - 1
[i1,t1], ... , [is,ts] all the direct predecessors of a representative of this orbit, of the shape
tau^{-t1}(i1), and i1 denotes the representative of orbit no. i1, and so on.
We assume first p elements of list [2] are the orbits of projectives.

REMARK: we ALWAYS assume that indecomposables with numbers 1..proj are projectives and
the only projectives (further dimension vectors are interpreted according to this order of projectives!).

Alternative arguments:
name = string with the name of predefined A-R quiver;
param1 = (optional) parameter for name ;
param2 = (optional) second parameter for name .

Call ARQuiverNumerical("what") to get a description of all the names and parameters for currently
available predefined A-R quivers. Returns: an object from the category IsARQuiverNumerical
(13.3.2).

This function "initializes" Auslander-Reiten quiver and performs all necessary preliminary com-
putations concerning mainly determining the matrix of dimensions of all Hom-spaces between inde-
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composables.
Examples.

Below we define an A-R quiver of a path algebra of the Dynkin quiver D4 with subspace orientation
of arrows.

Example
gap> a := ARQuiverNumerical(12, 4, [ [0],[1,0],[1,0],[1,0],[2,3,4,1],[5,2],[5,3],[5,4],[6,7,8,5],[9,6],[9,7],[9,8] ]);
<ARQuiverNumerical with 12 indecomposables and 4 projectives>

The same A-R quiver (with possibly little bit different enumeration of indecomposables) can be ob-
tained by invoking:

Example
gap> b := ARQuiverNumerical(12, 4, ["orbits", [ [2], [2,[1,0]], [2,[1,0]], [2,[1,0]] ] ]);
<ARQuiverNumerical with 12 indecomposables and 4 projectives>

This A-R quiver can be also obtained by:
Example

gap> a := ARQuiverNumerical("D4 subspace");
<ARQuiverNumerical with 12 indecomposables and 4 projectives>

since this is one of the predefined A-R quivers.
Another example of predefined A-R quiver: for an algebra from Bongartz-Gabriel list of maximal
finite type algebras with two simple modules. This is an algebra with number 5 on this list.

Example
gap> a := ARQuiverNumerical("BG", 5);
<ARQuiverNumerical with 72 indecomposables and 2 projectives>

13.3.2 IsARQuiverNumerical

. IsARQuiverNumerical (Category)

Objects from this category represent Auslander-Reiten (finite) quivers and additionally contain all
data necessary for further computations (as components accessed as usual by !.name-of-component):
ARdesc = numerical description of AR quiver (as list in ARQuiverNumerical (13.3.1)),
DimHomMat = matrix [dim Hom (i,j)] (=> rows 1..p contain dim. vectors of all indecomposables),
Simples = list of numbers of simple modules.

13.3.3 NumberOfIndecomposables

. NumberOfIndecomposables(AR) (attribute)

Argument: AR - an object from the category IsARQuiverNumerical (13.3.2).
Returns: the number of indecomposable modules in AR .
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13.3.4 NumberOfProjectives

. NumberOfProjectives(AR) (attribute)

Argument: AR - an object from the category IsARQuiverNumerical (13.3.2).
Returns: the number of indecomposable projective modules in AR .

13.4 Elementary operations

13.4.1 DimensionVector (DimVectFT)

. DimensionVector(AR, M) (operation)

Arguments: AR - an object from the category IsARQuiverNumerical (13.3.2);
M - a number of an indecomposable module in AR or a multiplicity vector (cf. 13.1). Returns: a
dimension vector of a module M in the form of a list. The order of dimensions in this list corresponds
to an order of projectives defined in AR (cf. ARQuiverNumerical (13.3.1)).

Example
gap> a := ARQuiverNumerical("D4 subspace");
<ARQuiverNumerical with 12 indecomposables and 4 projectives>
gap> DimensionVector(a, 7);
[ 1, 1, 0, 1 ]
gap> DimensionVector(a, [0,1,0,0,0,0,2,0,0,0,0,0]);
[ 3, 3, 0, 2 ]

13.4.2 DimHom

. DimHom(AR, M, N) (operation)

Arguments: AR - an object from the category IsARQuiverNumerical (13.3.2);
M - a number of indecomposable module in AR or a multiplicity vector;
N - a number of indecomposable module in AR or a multiplicity vector (cf. 13.1).

Returns: the dimension of the homomorphism space between modules M and N .

13.4.3 DimEnd

. DimEnd(AR, M) (operation)

Arguments: AR - an object from the category IsARQuiverNumerical (13.3.2);
M - a number of indecomposable module in AR or a multiplicity vector (cf. 13.1).

Returns: the dimension of the endomorphism algebra of a module M .

13.4.4 OrbitDim

. OrbitDim(AR, M) (operation)
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Arguments: AR - an object from the category IsARQuiverNumerical (13.3.2);
M - a number of indecomposable module in AR or a multiplicity vector (cf. 13.1).

Returns: the dimension of the orbit of module M (in the variety of representations of quiver with
relations).

OrbitDim(M ) = d_1^2+...+d_p^2 - dim End(M ), where (d_i)_i = DimensionVector(M ).

13.4.5 OrbitCodim

. OrbitCodim(AR, M, N) (operation)

Arguments: AR - an object from the category IsARQuiverNumerical (13.3.2);
M - a number of indecomposable module in AR or a multiplicity vector;
N - a number of indecomposable module in AR or a multiplicity vector (cf. 13.1).

Returns: the codimension of orbits of modules M and N (= dim End(N ) - dim End(M )). [explain
more???]

NOTE: The function does not check if it makes sense, i.e. if M and N are in the same variety ( =
dimension vectors coincide)!

13.4.6 DegOrderLEQ

. DegOrderLEQ(AR, M, N) (operation)

Arguments: AR - an object from the category IsARQuiverNumerical (13.3.2);
M - a number of indecomposable module in AR or a multiplicity vector;
N - a number of indecomposable module in AR or a multiplicity vector (cf. 13.1).

Returns: true if M<=N in a degeneration order i.e. if N is a degeneration of M (see 13.2), and
false otherwise.

NOTE: Function checks if it makes sense, i.e. if M and N are in the same variety ( = dimension
vectors coincide). If not, it returns false and additionally prints warning.

Example
gap> a := ARQuiverNumerical("R nilp");
<ARQuiverNumerical with 7 indecomposables and 2 projectives>
gap> DimensionVector(a, 2); DimensionVector(a, 3);
[ 2, 1 ]
[ 2, 1 ]
gap> DegOrderLEQ(a, 2, 3);
true
gap> DegOrderLEQ(a, 3, 2);
false

13.4.7 DegOrderLEQNC

. DegOrderLEQNC(AR, M, N) (operation)

Arguments: AR - an object from the category IsARQuiverNumerical (13.3.2);
M - a number of indecomposable module in AR or a multiplicity vector;
N - a number of indecomposable module in AR or a multiplicity vector (cf. 13.1).
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Returns: true if M<=N in a degeneration order i.e. if N is a degeneration of M (see 13.2), and
false otherwise.

NOTE: Function does Not Check ("NC") if it makes sense, i.e. if M and N are in the same variety
( = dimension vectors coincide). If not, the result doesn’t make sense!
It is useful when one wants to speed up computations (does not need to check the dimension vectors).

13.4.8 PrintMultiplicityVector

. PrintMultiplicityVector(M) (operation)

M - a list = multiplicity vector (cf. 13.1).

This function prints the multiplicity vector M in a more "readable" way (especially useful if M is
long and sparse). It prints a "sum" of non-zero multiplicities in the form "multiplicity * (number-of-
indecomposable)".

13.4.9 PrintMultiplicityVectors

. PrintMultiplicityVectors(list) (operation)

list - a list of multiplicity vectors (cf. 13.1).

This function prints all the multiplicity vectors from the list in a more "readable" way, as
PrintMultiplicityVector (13.4.8).

13.5 Operations returning families of modules

The functions from this section use quite advanced algorithms on (potentially) big amount of data, so
their runtimes can be long for "big" A-R quivers!

13.5.1 ModulesOfDimVect

. ModulesOfDimVect(AR, which) (operation)

Arguments: AR - an object from the category IsARQuiverNumerical (13.3.2);
which - a number of an indecomposable module in AR or a dimension vector (see DimensionVector
(13.4.1)). Returns: a list of all modules (= multiplicity vectors, see 13.1) with dimension vector
equal to which .

13.5.2 DegOrderPredecessors

. DegOrderPredecessors(AR, M) (operation)

Arguments: AR - an object from the category IsARQuiverNumerical (13.3.2);
M - a number of indecomposable module in AR or a multiplicity vector (cf. 13.1).

Returns: a list of all modules (= multiplicity vectors) which are the predecessors of module M in
a degeneration order (see 13.2).
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Example
gap> a := ARQuiverNumerical("BG", 5);
<ARQuiverNumerical with 72 indecomposables and 2 projectives>
gap> preds := DegOrderPredecessors(a, 60);; Length(preds);
18
gap> DegOrderLEQ(a, preds[7], 60);
true
gap> dpreds := DegOrderDirectPredecessors(a, 60);; Length(dpreds);
5
gap> PrintMultiplicityVectors(dpreds);
1*(14) + 1*(64)
1*(10) + 1*(71)
1*(9) + 1*(67)
1*(5) + 1*(17) + 1*(72)
1*(1) + 1*(5) + 1*(20)

13.5.3 DegOrderDirectPredecessors

. DegOrderDirectPredecessors(AR, M) (operation)

Arguments: AR - an object from the category IsARQuiverNumerical (13.3.2);
M - a number of indecomposable module in AR or a multiplicity vector (cf. 13.1).

Returns: a list of all modules (= multiplicity vectors) which are the direct predecessors of module
M in a degeneration order (see 13.2).

13.5.4 DegOrderPredecessorsWithDirect

. DegOrderPredecessorsWithDirect(AR, M) (operation)

Arguments: AR - an object from the category IsARQuiverNumerical (13.3.2);
M - a number of indecomposable module in AR or a multiplicity vector (cf. 13.1).

Returns: a pair (2-element list) [p , dp ] where
p = the same as a result of DegOrderPredecessors (13.5.2);
dp = the same as a result of DegOrderDirectPredecessors (13.5.3);

The function generates predecessors only once, so the runtime is exactly the same as DegOrderDi-
rectPredecessors.

13.5.5 DegOrderSuccessors

. DegOrderSuccessors(AR, M) (operation)

Arguments: AR - an object from the category IsARQuiverNumerical (13.3.2);
M - a number of indecomposable module in AR or a multiplicity vector (cf. 13.1).

Returns: a list of all modules (= multiplicity vectors) which are the successors of module M in a
degeneration order (see 13.2).
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13.5.6 DegOrderDirectSuccessors

. DegOrderDirectSuccessors(AR, M) (operation)

Arguments: AR - an object from the category IsARQuiverNumerical (13.3.2);
M - a number of indecomposable module in AR or a multiplicity vector (cf. 13.1).

Returns: a list of all modules (= multiplicity vectors) which are the direct successors of module
M in a degeneration order (see 13.2).

13.5.7 DegOrderSuccessorsWithDirect

. DegOrderSuccessorsWithDirect(AR, M) (operation)

Arguments: AR - an object from the category IsARQuiverNumerical (13.3.2);
M - a number of indecomposable module in AR or a multiplicity vector (cf. 13.1).

Returns: a pair (2-element list) [s , ds ] where
s = the same as a result of DegOrderSuccessors (13.5.5);
ds = the same as a result of DegOrderDirectSuccessors (13.5.6);

The function generates successors only once, so the runtime is exactly the same as DegOrderDi-
rectSuccessors.
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IsInjectiveComplex, 139
IsInjectiveModule, 68
IsIsomorphism, 86
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IsLeftDivisible, 77
IsLeftMinimal, 86
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IsMonomialIdeal, 32
IsNakayamaAlgebra, 36
IsNormalForm, 42
IsNthSyzygy, 100
IsOmegaPeriodic, 101
IsomorphicModules, 68
IsomorphismOfModules, 93
IsPath, 20
IsPathAlgebra, 25
IsPathAlgebraMatModule, 62
IsPathAlgebraModule, 77
IsPathAlgebraModuleHomomorphism, 82
IsPathAlgebraVector, 77
IsPrefixOfTipInTipIdeal, 57
IsProjectiveComplex, 139
IsProjectiveModule, 68
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IsQPAComplex, 124
IsQuadraticIdeal, 33
IsQuiver, 15
IsQuiverAlgebra, 36
IsQuiverProductDecomposition, 48
IsQuiverVertex, 20
IsQuotientOfPathAlgebra, 34
IsRadicalSquareZeroAlgebra, 36
IsRepeating, 116
IsRightGroebnerBasis, 58
IsRightMinimal, 86
IsRightUniform, 26
IsRigidModule, 68
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IsSemicommutativeAlgebra, 37
IsSemisimpleAlgebra, 37
IsSemisimpleModule, 69
IsShortExactSequence, 130
IsSimpleQPAModule, 69
IsSpecialBiserialAlgebra, 37
IsSpecialBiserialQuiver, 45
IsSplitEpimorphism, 87
IsSplitMonomorphism, 87
IsStoringValues, 116
IsStringAlgebra, 38
IsSurjective, 87
IsSymmetricAlgebra, 38
IsTauPeriodic, 110
IsTauRigidModule, 69
IsTipReducedGroebnerBasis, 56
IsTreeQuiver, 16
IsTriangularReduced, 38
IsTtiltingModule, 101
IsUAcyclicQuiver, 15
IsUniform, 26
IsUnitForm, 143
IsWeaklyNonnegativeUnitForm, 143
IsWeaklyPositiveUnitForm, 144
IsWeaklySymmetricAlgebra, 38
IsZero, 69, 87
IsZeroComplex, 125
IsZeroPath, 20
Iterator, 57
IyamaGenerator, 101

Kernel, 93

KernelInclusion, 93
KernelOfWhat, 87
KroneckerAlgebra, 44

LeadingCoefficient, 27
LeadingCoefficient (of PathAlgebra-

Vector), 77
LeadingComponent, 77
LeadingMonomial, 27
LeadingPosition, 78
LeadingTerm, 27
LeadingTerm (of PathAlgebraVector), 78
LeftApproximationByAddM, 103
LeftApproximationByAddTHat, 101
LeftDivision, 78
LeftFacMApproximation, 101
LeftInverseOfHomomorphism, 88
LeftMinimalVersion, 94
LeftMutationOfCotiltingModule-

Complement, 101
LeftMutationOfTiltingModuleComplement,

101
LeftSubMApproximation, 102
LengthOfComplex, 129
LengthOfPath, 21
LiftingCompleteSetOfOrthogonal-

Idempotents, 52
LiftingIdempotent, 53
LiftingInclusionMorphisms, 102
LiftingMorphismFromProjective, 102
LoewyLength, 41

for a PathAlgebraMatModule, 69
LowerBound, 121, 129
LowestKnownDegree, 130
LowestKnownPosition, 117, 121

MakeHalfInfList, 114
MakeInfList, 118
MakeInfListFromHalfInfLists, 118
MakeUniformOnRight, 28
MappedExpression, 28
MappingCone, 137
MatricesOfPathAlgebraMatModule-

Homomorphism, 88
MatricesOfPathAlgebraModule, 69
MatrixOfHomomorphismBetween-

Projectives, 94
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MaximalCommonDirectSummand, 70
MiddleEnd, 120
MiddlePart, 120
MiddleStart, 120
MinimalGeneratingSetOfModule, 70
MinimalLeftAddMApproximation, 103
MinimalLeftApproximation, 103
MinimalLeftFacMApproximation, 101
MinimalLeftSubMApproximation, 102
MinimalRightAddMApproximation, 103
MinimalRightApproximation, 103
MinimalRightFacMApproximation, 107
MinimalRightSubMApproximation, 108
ModulesOfDimVect, 151
MorphismOfChainMap, 137
MorphismOnCoKernel, 104
MorphismOnImage, 104
MorphismOnKernel, 104
MorphismsOfChainMap, 137

NakayamaAlgebra, 44
NakayamaAutomorphism, 41
NakayamaFunctorOfModule, 74
NakayamaFunctorOfModuleHomomorphism, 74
NakayamaPermutation, 41
NegativeInfinity, 113
NegativePart, 120
NegativePartFrom, 121
NeighborsOfVertex, 22
NewValueCallback, 116
Nontips, 57
NontipSize, 57
NthPowerOfArrowIdeal, 31
NthSyzygy, 105
NumberOfArrows, 18
NumberOfComplementsOfAlmostComplete-

CotiltingModule, 105
NumberOfComplementsOfAlmostComplete-

TiltingModule, 105
NumberOfIndecomposables, 148
NumberOfNonIsoDirSummands, 70
NumberOfProjectives, 149
NumberOfVertices, 18
N_RigidModule, 108

ObjectOfComplex, 127
OppositePath, 46

OppositePathAlgebra, 46
OppositePathAlgebraElement, 47
OppositeQuiver, 18
OrbitCodim, 150
OrbitDim, 149
OrderedBy, 15
OrderingOfAlgebra, 25
OrderingOfQuiver, 18
OrderOfNakayamaAutomorphism, 41
OriginalPathAlgebra, 43
OutDegreeOfVertex, 22
OutgoingArrowsOfVertex, 22

PartialOrderOfPoset, 23
PathAlgebra, 24
PathAlgebraOfMatModuleMap, 88
PathAlgebraVector, 79
PathsOfLengthTwo, 31
Poset

for a list P and a set of relations rel, 23
PosetAlgebra, 44
PosetOfPosetAlgebra, 45
PositiveInfinity, 113
PositivePart, 120
PositivePartFrom, 121
PositiveRootsOfUnitForm, 144
PredecessorOfModule, 110
PreImagesRepresentative, 88
PreprojectiveAlgebra, 52
PrimitiveIdempotents, 52
PrintMultiplicityVector, 151
PrintMultiplicityVectors, 151
ProductOfIdeals, 33
ProjDimension, 105
ProjDimensionOfModule, 105
ProjectFromProductQuiver, 48
ProjectiveCover, 105
ProjectivePathAlgebraPresentation, 80
ProjectiveResolution, 140
ProjectiveResolutionOfComplex, 140
ProjectiveResolutionOfPathAlgebra-

Module, 106
ProjectiveResolutionOfSimpleModule-

OverEndo, 106
ProjectiveToInjectiveComplex, 141
ProjectiveToInjectiveFiniteComplex, 141
PullBack, 106
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PushOut, 106

QuadraticFormOfUnitForm, 144
QuadraticPerpOfPathAlgebraIdeal, 33
Quiver

adjacenymatrix, 13
lists of vertices and arrows, 13
no. of vertices, list of arrows, 13

QuiverAlgebraOfAmodAeA, 51
QuiverAlgebraOfeAe, 51
QuiverOfPathAlgebra, 25
QuiverProduct, 47
QuiverProductDecomposition, 47

RadicalOfModule, 70
RadicalOfModuleInclusion, 95
RadicalRightApproximationByAddM, 103
RadicalSeries, 70
RadicalSeriesOfAlgebra, 42
Range, 89
ReadAlgebra, 53
RejectOfModule, 95
RelationsOfAlgebra, 28
RepeatingList, 116
RestrictionViaAlgebraHomomorphism, 74
RestrictionViaAlgebraHomomorphismMap,

74
RightAlgebraModuleToPathAlgebraMat-

Module, 60
RightApproximationByAddM, 103
RightApproximationByPerpT, 107
RightFacMApproximation, 107
RightGroebnerBasis, 58
RightGroebnerBasisOfIdeal, 58
RightGroebnerBasisOfModule, 80
RightInverseOfHomomorphism, 89
RightMinimalVersion, 95
RightModuleHomOverAlgebra, 82
RightModuleOverPathAlgebra

no dimension vector, 59
with dimension vector, 59

RightModuleOverPathAlgebraNC
no dimension vector, 59

RightMutationOfCotiltingModule-
Complement, 107

RightMutationOfTiltingModule-
Complement, 107

RightProjectiveModule, 76
RightSubMApproximation, 108

SaveAlgebra, 53
SeparatedQuiver, 19
Shift, 117, 122, 131
ShiftUnsigned, 132
ShortExactSequence, 127
SimpleModules, 73
SimpleTensor, 49
Size, 23
SocleOfModule, 71
SocleOfModuleInclusion, 95
SocleSeries, 71
Source, 89
SourceOfPath, 20
Splice, 122
StalkComplex, 127
StarOfMapBetweenDecompProjectives, 142
StarOfMapBetweenIndecProjectives, 142
StarOfMapBetweenProjectives, 142
StarOfModule, 75
StarOfModuleHomomorphism, 75
StartPosition, 115
SubRepresentation, 71
SubRepresentationInclusion, 96
SumOfSubmodules, 71
SupportModuleElement, 71
SymmetricMatrixOfUnitForm, 144
SyzygyCosyzygyTruncation, 133
SyzygyTruncation, 133

TargetOfPath, 20
TargetVertex, 80
TauOfComplex, 141
TensorAlgebrasInclusion, 49
TensorProductDecomposition, 49
TensorProductOfAlgebras, 49
TensorProductOfModules, 75
TiltingModule, 108
Tip, 27
TipCoefficient, 27
TipMonomial, 27
TipReduce, 57
TipReduceGroebnerBasis, 57
TitsUnitFormOfAlgebra, 144
TopOfModule, 72
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TopOfModuleProjection, 96
TraceOfModule, 96
TransposeOfDual, 75
TransposeOfModule, 75
TransposeOfModuleHomomorphism, 76
TrD, 75
TrivialExtensionOfQuiverAlgebra, 51
TruncatedPathAlgebra, 45

UnderlyingSet, 23
UniformGeneratorsOfModule, 81
UnitForm, 145
UpperBound, 121, 129

Vectorize, 81
VertexPosition, 28
VerticesOfQuiver, 17

WalkOfPath, 21

YonedaProduct, 132

Zero, 89
ZeroChainMap, 135
ZeroComplex, 126
ZeroMapping, 89
ZeroModule, 73
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