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Chapter 1

Simplicial complexes & CW complexes

1.1 The Klein bottle as a simplicial complex

The following example constructs the Klein bottle as a simplicial complex K on 9 vertices, and
then constructs the cellular chain complex C∗ = C∗(K) from which the integral homology groups
H1(K,Z) =Z2⊕Z, H2(K,Z) = 0 are computed. The chain complex D∗=C∗⊗ZZ2 is also constructed
and used to compute the mod-2 homology vector spaces H1(K,Z2) =Z2⊕Z2, H2(K,Z) =Z2. Finally,
a presentation π1(K) = 〈x,y : yxy−1x〉 is computed for the fundamental group of K.

Example
gap> 2simplices:=

> [[1,2,5], [2,5,8], [2,3,8], [3,8,9], [1,3,9], [1,4,9],

> [4,5,8], [4,6,8], [6,8,9], [6,7,9], [4,7,9], [4,5,7],

> [1,4,6], [1,2,6], [2,6,7], [2,3,7], [3,5,7], [1,3,5]];;

gap> K:=SimplicialComplex(2simplices);

Simplicial complex of dimension 2.

gap> C:=ChainComplex(K);

Chain complex of length 2 in characteristic 0 .

gap> Homology(C,1);

[ 2, 0 ]

gap> Homology(C,2);

[ ]

gap> D:=TensorWithIntegersModP(C,2);

Chain complex of length 2 in characteristic 2 .

gap> Homology(D,1);

2

gap> Homology(D,2);

1

gap> G:=FundamentalGroup(K);

<fp group of size infinity on the generators [ f1, f2 ]>

gap> RelatorsOfFpGroup(G);

[ f2*f1*f2^-1*f1 ]

4
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1.2 The Quillen complex

Given a group G one can consider the partially ordered set Ap(G) of all non-trivial elementary abelian
p-subgroups of G, the partial order being set inclusion. The order complex ∆Ap(G) is a simplicial
complex which is called the Quillen complex .

The following example constructs the Quillen complex ∆A2(S7) for the symmetric group of degree
7 and p = 2. This simplicial complex involves 11291 simplices, of which 4410 are 2-simplices..

Example
gap> K:=QuillenComplex(SymmetricGroup(7),2);

Simplicial complex of dimension 2.

gap> Size(K);

11291

gap> K!.nrSimplices(2);

4410

1.3 The Quillen complex as a reduced CW-complex

Any simplicial complex K can be regarded as a regular CW complex. Different datatypes are used
in HAP for these two notions. The following continuation of the above Quillen complex example
constructs a regular CW complex Y isomorphic to (i.e. with the same face lattice as) K = ∆A2(S7).
An advantage to working in the category of CW complexes is that it may be possible to find a CW
complex X homotopy equivalent to Y but with fewer cells than Y . The cellular chain complex C∗(X) of
such a CW complex X is computed by the following commands. From the number of free generators
of C∗(X), which correspond to the cells of X , we see that there is a single 0-cell and 160 2-cells.
Thus the Quillen complex $$\Delta{\cal A}_2(S_7) \simeq \bigvee_{1\le i\le 160} S^2$$ has the
homotopy type of a wedge of 160 2-spheres. This homotopy equivalence is given in [Kso00, (15.1)]
where it was obtained by purely theoretical methods.

Example
gap> Y:=RegularCWComplex(K);

Regular CW-complex of dimension 2

gap> C:=ChainComplex(Y);

Chain complex of length 2 in characteristic 0 .

gap> C!.dimension(0);

1

gap> C!.dimension(1);

0

gap> C!.dimension(2);

160

Note that for regular CW complexes Y the function ChainComplex(Y) returns the cellular chain
complex C∗(X) of a (typically non-regular) CW complex X homotopy equivalent to Y . The cellular
chain complex C∗(Y ) of Y itself can be obtained as follows.
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Example
gap> CC:=ChainComplexOfRegularCWComplex(Y);

Chain complex of length 2 in characteristic 0 .

gap> CC!.dimension(0);

1316

gap> CC!.dimension(1);

5565

gap> CC!.dimension(2);

4410

1.4 Constructing a regular CW-complex from its face lattice

The following example begins by creating a 2-dimensional annulus A as a regular CW-complex, and
testing that it has the correct integral homology H0(A,Z) = Z, H1(A,Z) = Z, H2(A,Z) = 0.

Example
gap> FL:=[];; #The face lattice

gap> FL[1]:=[[1,0],[1,0],[1,0],[1,0]];;

gap> FL[2]:=[[2,1,2],[2,3,4],[2,1,4],[2,2,3],[2,1,4],[2,2,3]];;

gap> FL[3]:=[[4,1,2,3,4],[4,1,2,5,6]];;

gap> FL[4]:=[];;

gap> A:=RegularCWComplex(FL);

Regular CW-complex of dimension 2

gap> Homology(A,0);

[ 0 ]

gap> Homology(A,1);

[ 0 ]

gap> Homology(A,2);

[ ]

Next we construct the direct product Y = A×A×A×A×A of five copies of the annulus. This is a
10-dimensional CW complex involving 248832 cells. It will be homotopy equivalent Y ' X to a CW
complex X involving fewer cells. The CW complex X may be non-regular. We compute the cochain
complex D∗ = HomZ(C∗(X),Z) from which the cohomology groups
H0(Y,Z) = Z,
H1(Y,Z) = Z5,
H2(Y,Z) = Z10,
H3(Y,Z) = Z10,
H4(Y,Z) = Z5,
H5(Y,Z) = Z,
H6(Y,Z) = 0
are obtained.

Example
gap> Y:=DirectProduct(A,A,A,A,A);

Regular CW-complex of dimension 10
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gap> Size(Y);

248832

gap> C:=ChainComplex(Y);

Chain complex of length 10 in characteristic 0 .

gap> D:=HomToIntegers(C);

Cochain complex of length 10 in characteristic 0 .

gap> Cohomology(D,0);

[ 0 ]

gap> Cohomology(D,1);

[ 0, 0, 0, 0, 0 ]

gap> Cohomology(D,2);

[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]

gap> Cohomology(D,3);

[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]

gap> Cohomology(D,4);

[ 0, 0, 0, 0, 0 ]

gap> Cohomology(D,5);

[ 0 ]

gap> Cohomology(D,6);

[ ]

1.5 Cup products

Continuing with the previous example, we consider the first and fifth generators g1
1,g

1
5 ∈ H1(W,Z) =

Z5 and establish that their cup product g1
1∪g1

5 =−g2
7 ∈H2(W,Z) = Z10 is equal to minus the seventh

generator of H2(W,Z). We also verify that g1
5∪g1

1 =−g1
1∪g1

5.
Example

gap> cup11:=CupProduct(FundamentalGroup(Y));

function( a, b ) ... end

gap> cup11([1,0,0,0,0],[0,0,0,0,1]);

[ 0, 0, 0, 0, 0, 0, -1, 0, 0, 0 ]

gap> cup11([0,0,0,0,1],[1,0,0,0,0]);

[ 0, 0, 0, 0, 0, 0, 1, 0, 0, 0 ]

This computation of low-dimensional cup products is achieved using group-theoretic methods to
approximate the diagonal map ∆:Y → Y ×Y in dimensions ≤ 2. In order to construct cup products
in higher degrees HAP requires a cellular inclusion Y ↪→ Y ×Y with projection p:Y � Y that in-
duces isomorphisms on integral homology. The function DiagonalApproximation(Y) constructs a
candidate inclusion, but the projection p:Y � Y needs to be tested for homology equivalence. If the
candidate inclusion passes this test then the function CupProduct(Y), involving the candidate space,
can be used for cup products.
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The following example calculates g3
3 ∪ g1

3 = g4
1 where W = S× S× S× S is the direct product of

four circles, and where gn
k denotes the k-th generator of Hn(W,Z).

Example
gap> S:=SimplicialComplex([[1,2],[2,3],[1,3]]);;

gap> S:=RegularCWComplex(S);;

gap> W:=DirectProduct(S,S,S,S);;

gap> cup:=CupProduct(W);

function( p, q, vv, ww ) ... end

gap> cup(3,1,[0,0,1,0],[0,0,1,0]);

[ 1 ]

#Now test that the diagonal construction is valid.

gap> D:=DiagonalApproximation(W);;

gap> p:=D!.projection;

Map of regular CW-complexes

gap> P:=ChainMap(p);

Chain Map between complexes of length 4 .

gap> IsIsomorphismOfAbelianFpGroups(Homology(P,0));

true

gap> IsIsomorphismOfAbelianFpGroups(Homology(P,1));

true

gap> IsIsomorphismOfAbelianFpGroups(Homology(P,2));

true

gap> IsIsomorphismOfAbelianFpGroups(Homology(P,3));

true

gap> IsIsomorphismOfAbelianFpGroups(Homology(P,4));

true

1.6 CW maps and induced homomorphisms

A strictly cellular map f :X → Y of regular CW-complexes is a cellular map for which the image
of any cell is a cell (of possibly lower dimension). Inclusions of CW-subcomplexes, and projections
from a direct product to a factor, are examples of such maps. Strictly cellular maps can be represented
in HAP, and their induced homomorphisms on (co)homology and on fundamental groups can be
computed.

The following example begins by visualizing the trefoil knot κ ∈ R3. It then constructs a
regular CW structure on the complement Y = D3 \Nbhd(κ) of a small tubular open neighbour-
hood of the knot lying inside a large closed ball D3. The boundary of this tubular neighbour-
hood is a 2-dimensional CW-complex B homeomorphic to a torus S1× S1 with fundamental group
π1(B) =< a,b : aba−1b−1 = 1 >. The inclusion map f :B ↪→ Y is constructed. Then a presentation
π1(Y ) =< x,y |xy−1x−1yx−1y−1 > and the induced homomorphism $$\pi_1(B)\rightarrow \pi_1(Y),
a\mapsto y^{-1}xy^2xy^{-1}, b\mapsto y $$ are computed. This induced homomorphism is an ex-
ample of a peripheral system and is known to contain sufficient information to characterize the knot
up to ambient isotopy.
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Finally, it is verified that the induced homology homomorphism H2(B,Z)→ H2(Y,Z) is an iso-
momorphism.

Example
gap> K:=PureCubicalKnot(3,1);;

gap> ViewPureCubicalKnot(K);;

Example
gap> K:=PureCubicalKnot(3,1);;

gap> f:=KnotComplementWithBoundary(ArcPresentation(K));

Map of regular CW-complexes

gap> G:=FundamentalGroup(Target(f));

<fp group of size infinity on the generators [ f1, f2 ]>

gap> RelatorsOfFpGroup(G);

[ f1*f2^-1*f1^-1*f2*f1^-1*f2^-1 ]

gap> F:=FundamentalGroup(f);

[ f1, f2 ] -> [ f2^-1*f1*f2^2*f1*f2^-1, f1 ]

gap> phi:=ChainMap(f);

Chain Map between complexes of length 2 .

gap> H:=Homology(phi,2);

[ g1 ] -> [ g1 ]



Chapter 2

Cubical complexes & permutahedral
complexes

2.1 Cubical complexes

A finite simplicial complex can be defined to be a CW-subcomplex of the canonical regular CW-
structure on a simplex ∆n of some dimension n. Analogously, a finite cubical complex is a CW-
subcomplex of the regular CW-structure on a cube [0,1]n of some dimension n. Equivalently, but more
conveniently, we can replace the unit interval [0,1] by an interval [0,k] with CW-structure involving
2k+1 cells, namely one 0-cell for each integer 0≤ j≤ k and one 1-cell for each open interval ( j, j+1)
for 0≤ j ≤ k−1. A finite cuical complex M is a CW-subcompex M ⊂ [0,k1]× [0,k2]×·· · [0,kn] of a
direct product of intervals, the direct product having the usual direct product CW-structure. The equiv-
alence of these two definitions follows from the Gray code embedding of a mesh into a hypercube. We
say that the cubical complex has ambient dimension n. A cubical complex M of ambient dimension n
is said to be pure if each cell lies in the boundary of an n-cell. In other words, M is pure if it is a union
of unit n-cubes in Rn, each unit cube having vertices with integer coordinates.

HAP has a datatype for finite cubical complexes, and a slightly different datatype for pure cubical
complexes.

The following example constructs the granny knot (the sum of a trefoil knot with its reflection) as
a 3-dimensional pure cubical complex, and then displays it.

Example
gap> K:=PureCubicalKnot(3,1);

prime knot 1 with 3 crossings

gap> L:=ReflectedCubicalKnot(K);

Reflected( prime knot 1 with 3 crossings )

gap> M:=KnotSum(K,L);

prime knot 1 with 3 crossings + Reflected( prime knot 1 with 3 crossings )

gap> Display(M);

Next we construct the complement Y = D3 \ M̊ of the interior of the pure cubical complex M.
Here D3 is a rectangular region with M ⊂ D̊3. This pure cubical complex Y is a union of 5891 unit

10
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3-cubes. We contract Y to get a homotopy equivalent pure cubical complex YY consisting of the union
of just 775 unit 3-cubes. Then we convert YY to a regular CW-complex W involving 11939 cells. We
contract W to obtain a homotopy equivalent regular CW-complex WW involving 5993 cells. Finally
we compute the fundamental group of the complement of the granny knot, and use the presentation of
this group to establish that the Alexander polynomial P(x) of the granny is

P(x) = x4−2x3 +3x2−2x+1 .
Example

gap> Y:=PureComplexComplement(M);

Pure cubical complex of dimension 3.

gap> Size(Y);

5891

gap> YY:=ZigZagContractedComplex(Y);

Pure cubical complex of dimension 3.

gap> Size(YY);

775

gap> W:=RegularCWComplex(YY);

Regular CW-complex of dimension 3

gap> Size(W);

11939

gap> WW:=ContractedComplex(W);

Regular CW-complex of dimension 2

gap> Size(WW);

5993

gap> G:=FundamentalGroup(WW);

<fp group of size infinity on the generators [ f1, f2, f3 ]>

gap> AlexanderPolynomial(G);

x_1^4-2*x_1^3+3*x_1^2-2*x_1+1

2.2 Permutahedral complexes

A finite pure cubical complex is a union of finitely many cubes in a tessellation of Rn by unit cubes.
One can also tessellate Rn by permutahedra, and we define a finite n-dimensional pure permutahedral
complex to be a union of finitely many permutahdra from such a tessellation. There are two features
of pure permutahedral complexes that are particularly useful in some situations:

• Pure permutahedral complexes are topological manifolds with boundary.

• The method used for finding a smaller pure cubical complex M′ homotopy equivalent to a given
pure cubical complex M retains the homeomorphism type, and not just the homotopy type, of
the space M.
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To illustrate these features the following example begins by reading in a protein backbone from the
online Protein Database, and storing it as a pure cubical complex K. The ends of the protein have been
joined, and the homology Hi(K,Z) = Z, i = 0,1 is seen to be that of a circle. We can thus regard the
protein as a knot K ⊂ R3. The protein is visualized as a pure permutahedral complex.

Example
gap> file:=HapFile("data1V2X.pdb");;

gap> K:=ReadPDBfileAsPurePermutahedralComplex("file");

Pure permutahedral complex of dimension 3.

gap> Homology(K,0);

[ 0 ]

gap> Homology(K,1);

[ 0 ]

Display(K);

An alternative method for seeing that the pure permutahedral complex K has the homotopy type
of a circle is to note that it is covered by open permutahedra (small open neighbourhoods of the closed
3-dimensional permutahedral titles) and to form the nerve N = Nerve(U ) of this open covering U .
The nerve N has the same homotopy type as K. The following commands establish that N is a 1-
dimensional simplicial complex and display N as a circular graph.

Example
gap> N:=Nerve(K);

Simplicial complex of dimension 1.

gap> Display(GraphOfSimplicialComplex(N));

The boundary of the pure permutahedral complex K is a 2-dimensional CW-complex B home-
omorphic to a torus. We next use the advantageous features of pure permutahedral complexes to
compute the homomorphism

φ :π1(B)→ π1(R3 \ K̊),a 7→ yx−3y2x−2yxy−1,b 7→ yx−1y−1x2y−1

where
π1(B) =< a,b : aba−1b−1 = 1 >,
π1(R3 \ K̊)∼=< x,y : y2x−2yxy−1 = 1,yx−2y−1x(xy−1)2 = 1 >.

Example
gap> Y:=PureComplexComplement(K);

Pure permutahedral complex of dimension 3.

gap> Size(Y);

418922

gap> YY:=ZigZagContractedComplex(Y);

Pure permutahedral complex of dimension 3.

gap> Size(YY);

3438

gap> W:=RegularCWComplex(YY);

Regular CW-complex of dimension 3

gap> f:=BoundaryMap(W);

https://www.rcsb.org/
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Map of regular CW-complexes

gap> CriticalCells(Source(f));

[ [ 2, 1 ], [ 2, 261 ], [ 1, 1043 ], [ 1, 1626 ], [ 0, 2892 ], [ 0, 24715 ] ]

gap> F:=FundamentalGroup(f,2892);

[ f1, f2 ] -> [ f2*f1^-3*f2^2*f1^-2*f2*f1*f2^-1, f2*f1^-1*f2^-1*f1^2*f2^-1 ]

gap> G:=Target(F);

<fp group on the generators [ f1, f2 ]>

gap> RelatorsOfFpGroup(G);

[ f2^2*f1^-2*f2*f1*f2^-1, f2*f1^-2*f2^-1*f1*(f1*f2^-1)^2 ]

2.3 Constructing pure cubical and permutahedral complexes

An n-dimensional pure cubical or permutahedral complex can be created from an n-dimensional array
of 0s and 1s. The following example creates and displays two 3-dimensional complexes.

Example
gap> A:=[[[0,0,0],[0,0,0],[0,0,0]],

> [[1,1,1],[1,0,1],[1,1,1]],

> [[0,0,0],[0,0,0],[0,0,0]]];;

gap> M:=PureCubicalComplex(A);

Pure cubical complex of dimension 3.

gap> P:=PurePermutahedralComplex(A);

Pure permutahedral complex of dimension 3.

gap> Display(M);

gap> Display(P);

2.4 Computations in dynamical systems

Pure cubical complexes can be useful for rigourous interval arithmetic calculations in numerical anal-
ysis. They can also be useful for trying to estimate approximations of certain numerical quantities. To
illustrate the latter we consider the Henon map

f :R2→ R2,

(
x
y

)
7→
(

y+1−ax2

bx

)
.

Starting with (x0,y0) = (0,0) and iterating (xn+1,yn+1) = f (xn,yn) with the parameter values a =
1.4, b = 0.3 one obtains a sequence of points which is known to be dense in the so called strange
attractor A of the Henon map. The first 10 million points in this sequence are plotted in the following
example, with arithmetic performed to 100 decimal places of accuracy. The sequence is stored as a
2-dimensional pure cubical complex where each 2-cell is square of side equal to ε = 1/500.

Example
gap> M:=HenonOrbit([0,0],14/10,3/10,10^7,500,100);

Pure cubical complex of dimension 2.
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gap> Size(M);

10287

gap> Display(M);

Repeating the computation but with squares of side ε = 1/1000
Example

gap> M:=HenonOrbit([0,0],14/10,3/10,10^7,1000,100);

gap> Size(M);

24949

we obtain the heuristic estimate
δ ' log24949−log10287

log2 = 1.277
for the box-counting dimension of the attractor A .



Chapter 3

Covering spaces

Let Y denote a finite regular CW-complex. Let Ỹ denote its universal covering space. The covering
space inherits a regular CW-structure which can be computed and stored using the datatype of a π1Y -
equivariant CW-complex. The cellular chain complex C∗Ỹ of Ỹ can be computed and stored as an
equivariant chain complex. Given an admissible discrete vector field on Y, we can endow Y with a
smaller non-regular CW-structre whose cells correspond to the critical cells in the vector field. This
smaller CW-structure leads to a more efficient chain complex C∗Ỹ involving one free generator for
each critical cell in the vector field.

3.1 Cellular chains on the universal cover

The following commands construct a 6-dimensional regular CW-complex Y ' S1×S1×S1 homotopy
equivalent to a product of three circles.

Example
gap> A:=[[1,1,1],[1,0,1],[1,1,1]];;

gap> S:=PureCubicalComplex(A);;

gap> T:=DirectProduct(S,S,S);;

gap> Y:=RegularCWComplex(T);;

Regular CW-complex of dimension 6

gap> Size(Y);

110592

The CW-somplex Y has 110592 cells. The next commands construct a free π1Y -equivariant chain
complex C∗Ỹ homotopy equivalent to the chain complex of the universal cover of Y . The chain com-
plex C∗Ỹ has just 8 free generators.

Example
gap> Y:=ContractedComplex(Y);;

gap> CU:=ChainComplexOfUniversalCover(Y);;

gap> List([0..Dimension(Y)],n->CU!.dimension(n));

[ 1, 3, 3, 1 ]

The next commands construct a subgroup H < π1Y of index 50 and the chain complex C∗Ỹ ⊗ZH
Z which is homotopy equivalent to the cellular chain complex C∗ỸH of the 50-fold cover ỸH of Y
corresponding to H.

15
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Example
gap> L:=LowIndexSubgroupsFpGroup(CU!.group,50);;

gap> H:=L[Length(L)-1];;

gap> Index(CU!.group,H);

50

gap> D:=TensorWithIntegersOverSubgroup(CU,H);

Chain complex of length 3 in characteristic 0 .

gap> List([0..3],D!.dimension);

[ 50, 150, 150, 50 ]

General theory implies that the 50-fold covering space ỸH should again be homotopy equivalent to
a product of three circles. In keeping with this, the following commands verify that ỸH has the same
integral homology as S1×S1×S1.

Example
gap> Homology(D,0);

[ 0 ]

gap> Homology(D,1);

[ 0, 0, 0 ]

gap> Homology(D,2);

[ 0, 0, 0 ]

gap> Homology(D,3);

[ 0 ]

3.2 Spun knots and the Satoh tube map

We’ll contruct two spaces Y,W with isomorphic fundamental groups and isomorphic intergal homol-
ogy, and use the integral homology of finite covering spaces to establsh that the two spaces have
distinct homotopy types.

By spinning a link K ⊂ R3 about a plane P⊂ R3 with P∩K = /0, we obtain a collection Sp(K)⊂
R4 of knotted tori. The following commands produce the two tori obtained by spinning the Hopf
link K and show that the space Y = R4 \ Sp(K) = Sp(R3 \K) is connected with fundamental group
π1Y = Z×Z and homology groups H0(Y ) = Z, H1(Y ) = Z2, H2(Y ) = Z4, H3(Y,Z) = Z2. The space
Y is only constructed up to homotopy, and for this reason is 3-dimensional.

Example
gap> Hopf:=PureCubicalLink("Hopf");

Pure cubical link.

gap> Y:=SpunAboutInitialHyperplane(PureComplexComplement(Hopf));

Regular CW-complex of dimension 3

gap> Homology(Y,0);

[ 0 ]

gap> Homology(Y,1);

[ 0, 0 ]

gap> Homology(Y,2);

[ 0, 0, 0, 0 ]

gap> Homology(Y,3);
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[ 0, 0 ]

gap> Homology(Y,4);

[ ]

gap> GY:=FundamentalGroup(Y);;

gap> GeneratorsOfGroup(GY);

[ f2, f3 ]

gap> RelatorsOfFpGroup(GY);

[ f3^-1*f2^-1*f3*f2 ]

An alternative embedding of two tori L ⊂ R4 can be obtained by applying the ’tube map’ of Shin
Satoh to a welded Hopf link [Sat00]. The following commands construct the complement W =R4 \L
of this alternative embedding and show that W has the same fundamental group and integral homology
as Y above.

Example
gap> L:=HopfSatohSurface();

Pure cubical complex of dimension 4.

gap> W:=ContractedComplex(RegularCWComplex(PureComplexComplement(L)));

Regular CW-complex of dimension 3

gap> Homology(W,0);

[ 0 ]

gap> Homology(W,1);

[ 0, 0 ]

gap> Homology(W,2);

[ 0, 0, 0, 0 ]

gap> Homology(W,3);

[ 0, 0 ]

gap> Homology(W,4);

[ ]

gap> GW:=FundamentalGroup(W);;

gap> GeneratorsOfGroup(GW);

[ f1, f2 ]

gap> RelatorsOfFpGroup(GW);

[ f1^-1*f2^-1*f1*f2 ]

Despite having the same fundamental group and integral homology groups, the above two spaces
Y and W were shown by Kauffman and Martins [KFM08] to be not homotopy equivalent. Their
technique involves the fundamental crossed module derived from the first three dimensions of the
universal cover of a space, and counts the representations of this fundamental crossed module into a
given finite crossed module. This homotopy inequivalence is recovered by the following commands
which involves the 5-fold covers of the spaces.

Example
gap> CY:=ChainComplexOfUniversalCover(Y);

Equivariant chain complex of dimension 3

gap> LY:=LowIndexSubgroups(CY!.group,5);;

gap> invY:=List(LY,g->Homology(TensorWithIntegersOverSubgroup(CY,g),2));;



A short HAP tutorial 18

gap> CW:=ChainComplexOfUniversalCover(W);

Equivariant chain complex of dimension 3

gap> LW:=LowIndexSubgroups(CW!.group,5);;

gap> invW:=List(LW,g->Homology(TensorWithIntegersOverSubgroup(CW,g),2));;

gap> SSortedList(invY)=SSortedList(invW);

false

3.3 Cohomology with local coefficients

The π1Y -equivariant cellular chain complex C∗Ỹ of the universal cover Ỹ of a regular CW-complex Y
can be used to compute the homology Hn(Y,A) and cohomology Hn(Y,A) of Y with local coefficients
in a Zπ1Y -module A. To illustrate this we consister the space Y arising as the complement of the
trefoil knot, with fundamental group π1Y = 〈x,y : xyx = yxy〉. We take A = Z to be the integers with
non-trivial π1Y -action given by x.1 =−1,y.1 =−1. We then compute

H0(Y,A) = Z2 ,
H1(Y,A) = Z3 ,
H2(Y,A) = Z .

Example
gap> K:=PureCubicalKnot(3,1);;

gap> Y:=PureComplexComplement(K);;

gap> Y:=ContractedComplex(Y);;

gap> Y:=RegularCWComplex(Y);;

gap> Y:=SimplifiedComplex(Y);;

gap> C:=ChainComplexOfUniversalCover(Y);;

gap> G:=C!.group;;

gap> GeneratorsOfGroup(G);

[ f1, f2 ]

gap> RelatorsOfFpGroup(G);

[ f2^-1*f1^-1*f2^-1*f1*f2*f1, f1^-1*f2^-1*f1^-1*f2*f1*f2 ]

gap> hom:=GroupHomomorphismByImages(G,Group([[-1]]),[G.1,G.2],[[[-1]],[[-1]]]);;

gap> A:=function(x); return Determinant(Image(hom,x)); end;;

gap> D:=TensorWithTwistedIntegers(C,A); #Here the function A represents

gap> #the integers with twisted action of G.

Chain complex of length 3 in characteristic 0 .

gap> Homology(D,0);

[ 2 ]

gap> Homology(D,1);

[ 3 ]

gap> Homology(D,2);

[ 0 ]
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3.4 Distinguishing between two non-homeomorphic homotopy equiva-
lent spaces

The granny knot is the sum of the trefoil knot and its mirror image. The reef knot is the sum of
two identical copies of the trefoil knot. The following commands show that the degree 1 homology
homomorphisms

H1(p−1(B),Z)→ H1(X̃H ,Z)
distinguish between the homeomorphism types of the complements X ⊂ R3 of the granny knot

and the reef knot, where B ⊂ X is the knot boundary, and where p: X̃H → X is the covering map
corresponding to the finite index subgroup H < π1X . More precisely, p−1(B) is in general a union of
path components

p−1(B) = B1∪B2∪·· ·∪Bt .
The function FirstHomologyCoveringCokernels(f,c) inputs an integer c and the inclusion

f :B ↪→ X of a knot boundary B into the knot complement X . The function returns the ordered list of
the lists of abelian invariants of cokernels

coker( H1(p−1(Bi),Z)→ H1(X̃H ,Z) )
arising from subgroups H < π1X of index c. To distinguish between the granny and reef knots we

use index c = 6.
Example

gap> K:=PureCubicalKnot(3,1);;

gap> L:=ReflectedCubicalKnot(K);;

gap> granny:=KnotSum(K,L);;

gap> reef:=KnotSum(K,K);;

gap> fg:=KnotComplementWithBoundary(ArcPresentation(granny));;

gap> fr:=KnotComplementWithBoundary(ArcPresentation(reef));;

gap> a:=FirstHomologyCoveringCokernels(fg,6);;

gap> b:=FirstHomologyCoveringCokernels(fr,6);;

gap> a=b;

false

3.5 Second homotopy groups of spaces with finite fundamental group

If p : Ỹ →Y is the universal covering map, then the fundamental group of Ỹ is trivial and the Hurewicz
homomorphism π2Ỹ →H2(Ỹ ,Z) from the second homotopy group of Ỹ to the second integral homol-
ogy of Ỹ is an isomorphism. Furthermore, the map p induces an isomorphism π2Ỹ → π2Y . Thus
H2(Ỹ ,Z) is isomorphic to the second homotopy group π2Y .

If the fundamental group of Y happens to be finite, then in principle we can calculate H2(Ỹ ,Z)∼=
π2Y . We illustrate this computation for Y equal to the real projective plane. The above computation
shows that Y has second homotopy group π2Y ∼= Z.

Example
gap> K:=[ [1,2,3], [1,3,4], [1,2,6], [1,5,6], [1,4,5],

> [2,3,5], [2,4,5], [2,4,6], [3,4,6], [3,5,6]];;

gap> K:=MaximalSimplicesToSimplicialComplex(K);

Simplicial complex of dimension 2.

gap> Y:=RegularCWComplex(K);
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Regular CW-complex of dimension 2

gap> # Y is a regular CW-complex corresponding to the projective plane.

gap> U:=UniversalCover(Y);

Equivariant CW-complex of dimension 2

gap> G:=U!.group;;

gap> # G is the fundamental group of Y, which by the next command

gap> # is finite of order 2.

gap> Order(G);

2

gap> U:=EquivariantCWComplexToRegularCWComplex(U,Group(One(G)));

Regular CW-complex of dimension 2

gap> #U is the universal cover of Y

gap> Homology(U,0);

[ 0 ]

gap> Homology(U,1);

[ ]

gap> Homology(U,2);

[ 0 ]

3.6 Third homotopy groups of simply connected spaces

For any path connected space Y with universal cover Ỹ there is an exact sequence
→ π4Ỹ → H4(Ỹ ,Z)→ H4(K(π2Ỹ ,2),Z)→ π3Ỹ → H3(Ỹ ,Z)→ 0
due to J.H.C.Whitehead. Here K(π2(Ỹ ),2) is an Eilenberg-MacLane space with second homotopy

group equal to π2Ỹ .

3.6.1 First example

Continuing with the above example where Y is the real projective plane, we see that H4(Ỹ ,Z) =
H3(Ỹ ,Z) = 0 since Ỹ is a 2-dimensional CW-space. The exact sequence implies π3Ỹ ∼=
H4(K(π2Ỹ ,2),Z). Furthermore, π3Ỹ = π3Y . The following commands establish that π3Y ∼= Z .

Example
gap> A:=AbelianPcpGroup([0]);

Pcp-group with orders [ 0 ]

gap> K:=EilenbergMacLaneSimplicialGroup(A,2,5);;

gap> C:=ChainComplexOfSimplicialGroup(K);

Chain complex of length 5 in characteristic 0 .

gap> Homology(C,4);

[ 0 ]
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3.6.2 Second example

The following commands construct a 4-dimensional simplicial complex Y with 9 vertices and 36 4-
dimensional simplices, and establish that

π1Y = 0,π2Y = Z,H3(Y,Z) = 0,H4(Y,Z) = Z,H4(K(π2Y,2),Z) = Z.
Example

gap> Y:=[ [ 1, 2, 4, 5, 6 ], [ 1, 2, 4, 5, 9 ], [ 1, 2, 5, 6, 8 ],

> [ 1, 2, 6, 4, 7 ], [ 2, 3, 4, 5, 8 ], [ 2, 3, 5, 6, 4 ],

> [ 2, 3, 5, 6, 7 ], [ 2, 3, 6, 4, 9 ], [ 3, 1, 4, 5, 7 ],

> [ 3, 1, 5, 6, 9 ], [ 3, 1, 6, 4, 5 ], [ 3, 1, 6, 4, 8 ],

> [ 4, 5, 7, 8, 3 ], [ 4, 5, 7, 8, 9 ], [ 4, 5, 8, 9, 2 ],

> [ 4, 5, 9, 7, 1 ], [ 5, 6, 7, 8, 2 ], [ 5, 6, 8, 9, 1 ],

> [ 5, 6, 8, 9, 7 ], [ 5, 6, 9, 7, 3 ], [ 6, 4, 7, 8, 1 ],

> [ 6, 4, 8, 9, 3 ], [ 6, 4, 9, 7, 2 ], [ 6, 4, 9, 7, 8 ],

> [ 7, 8, 1, 2, 3 ], [ 7, 8, 1, 2, 6 ], [ 7, 8, 2, 3, 5 ],

> [ 7, 8, 3, 1, 4 ], [ 8, 9, 1, 2, 5 ], [ 8, 9, 2, 3, 1 ],

> [ 8, 9, 2, 3, 4 ], [ 8, 9, 3, 1, 6 ], [ 9, 7, 1, 2, 4 ],

> [ 9, 7, 2, 3, 6 ], [ 9, 7, 3, 1, 2 ], [ 9, 7, 3, 1, 5 ] ];;

gap> Y:=MaximalSimplicesToSimplicialComplex(Y);

Simplicial complex of dimension 4.

gap> Y:=RegularCWComplex(Y);

Regular CW-complex of dimension 4

gap> Order(FundamentalGroup(Y));

1

gap> Homology(Y,2);

[ 0 ]

gap> Homology(Y,3);

[ ]

gap> Homology(Y,4);

[ 0 ]

Whitehead’s sequence reduces to an exact sequence
Z→ Z→ π3Y → 0
in which the first map is H4(Y,Z) = Z→ H4(K(π2Y,2),Z) = Z. In order to determine π3Y it

remains compute this first map. This computation is currently not available in HAP.
[The simplicial complex in this second example is due to W. Kiihnel and T. F. Banchoff and is

of the homotopy type of the complex projective plane. So, assuming this extra knowledge, we have
π3Y = 0.]



Chapter 4

Topological data analysis

4.1 Persistent homology

Pairwise distances between 74 points from some metric space have been recorded and stored in a
74×74 matrix D. The following commands load the matrix, construct a filtration of length 100 on the
first two dimensions of the assotiated clique complex (also known as the Rips Complex), and display
the resulting degree 0 persistent homology as a barcode. A single bar with label n denotes n bars with
common starting point and common end point.

Example
gap> file:=HapFile("data253a.txt");;

gap> Read(file);

gap> G:=SymmetricMatrixToFilteredGraph(D,100);

Filtered graph on 74 vertices.

gap> K:=FilteredRegularCWComplex(CliqueComplex(G,2));

Filtered regular CW-complex of dimension 2

gap> P:=PersistentBettiNumbers(K,0);;

gap> BarCodeCompactDisplay(P);

The next commands display the resulting degree 1 persistent homology as a barcode.
Example

gap> P:=PersistentBettiNumbers(K,1);;

gap> BarCodeCompactDisplay(P);

The following command displays the 1 skeleton of the simplicial complex arizing as the 65-th
term in the filtration on the clique complex.

Example
gap> Y:=FiltrationTerm(K,65);

Regular CW-complex of dimension 1

gap> Display(HomotopyGraph(Y));

22
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These computations suuggest that the dataset contains two persistent path components (or clus-
ters), and that each path component is in some sense periodic. The final command displays one
possible representation of the data as points on two circles.

4.1.1 Background to the data

Each point in the dataset was an image consisting of 732× 761 pixels. This point was regarded as a
vector in R732×761 and the matrix D was constructed using the Euclidean metric. The images were the
following:

4.2 Mapper clustering

The following example reads in a set S of vectors of rational numbers. It uses the Euclidean distance
d(u,v) between vectors. It fixes some vector $u_0\in S$ and uses the associated function f :D→
[0,b] ⊂ R,v 7→ d(u0,v). In addition, it uses an open cover of the interval [0,b] consisting of 100
uniformly distributed overlapping open subintervals of radius r = 29. It also uses a simple clustering
algorithm implemented in the function cluster.

These ingredients are input into the Mapper clustering procedure to produce a simplicial complex
M which is intended to be a representation of the data. The complex M is 1-dimensional and the final
command uses GraphViz software to visualize the graph. The nodes of this simplicial complex are
"buckets" containing data points. A data point may reside in several buckets. The number of points in
the bucket determines the size of the node. Two nodes are connected by an edge when their end-point
nodes contain common data points.

Example
gap> file:=HapFile("data134.txt");;

gap> Read(file);

gap> dx:=EuclideanApproximatedMetric;;

gap> dz:=EuclideanApproximatedMetric;;

gap> L:=List(S,x->Maximum(List(S,y->dx(x,y))));;

gap> n:=Position(L,Minimum(L));;

gap> f:=function(x); return [dx(S[n],x)]; end;;

gap> P:=30*[0..100];; P:=List(P, i->[i]);;

gap> r:=29;;

gap> epsilon:=75;;

gap> cluster:=function(S)

> local Y, P, C;

> if Length(S)=0 then return S; fi;

> Y:=VectorsToOneSkeleton(S,epsilon,dx);

> P:=PiZero(Y);

> C:=Classify([1..Length(S)],P[2]);

> return List(C,x->S{x});

> end;;

gap> M:=Mapper(S,dx,f,dz,P,r,cluster);

Simplicial complex of dimension 1.

gap> Display(GraphOfSimplicialComplex(M));
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4.2.1 Background to the data

The datacloud S consists of the 400 points in the plane shown in the following picture.

4.3 Digital image analysis

The following example reads in a digital image as a filtered pure cubical complexex. The filtration
is obtained by thresholding at a sequence of uniformly spaced values on the greyscale range. The
persistent homology of this filtered complex is calculated in degrees 0 and 1 and displayed as two
barcodes.

Example
gap> file:=HapFile("image1.3.2.png");;

gap> F:=ReadImageAsFilteredPureCubicalComplex(file,20);

Filtered pure cubical complex of dimension 2.

gap> P:=PersistentBettiNumbers(F,0);;

gap> BarCodeCompactDisplay(P);

Example
gap> P:=PersistentBettiNumbers(F,1);;

gap> BarCodeCompactDisplay(P);

The 20 persistent bars in the degree 0 barcode suggest that the image has 20 objects. The degree 1
barcode suggests that 14 (or possibly 17) of these objects have holes in them.

4.3.1 Background to the data

The following image was used in the example.
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Group theoretic computations

5.1 Third homotopy group of a supsension of an Eilenberg-MacLane
space

The following example uses the nonabelian tensor square of groups to compute the third homotopy
group

π3(S(K(G,1))) = Z30

of the suspension of the Eigenberg-MacLane space K(G,1) for G the free nilpotent group of class
2 on four generators.

Example
gap> F:=FreeGroup(4);;G:=NilpotentQuotient(F,2);;

gap> ThirdHomotopyGroupOfSuspensionB(G);

[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0 ]

5.2 Representations of knot quandles

The following example constructs the finitely presented quandles associated to the granny knot and
square knot, and then computes the number of quandle homomorphisms from these two finitely prre-
sented quandles to the 17-th quandle in HAP’s library of connected quandles of order 24. The number
of homomorphisms differs between the two cases. The computation therefore establishes that the
complement in R3 of the granny knot is not homeomorphic to the complement of the square knot.

Example
gap> Q:=ConnectedQuandle(24,17,"import");;

gap> K:=PureCubicalKnot(3,1);;

gap> L:=ReflectedCubicalKnot(K);;

gap> square:=KnotSum(K,L);;

gap> granny:=KnotSum(K,K);;

gap> gcsquare:=GaussCodeOfPureCubicalKnot(square);;

gap> gcgranny:=GaussCodeOfPureCubicalKnot(granny);;

gap> Qsquare:=PresentationKnotQuandle(gcsquare);;

gap> Qgranny:=PresentationKnotQuandle(gcgranny);;

gap> NumberOfHomomorphisms(Qsquare,Q);

408

25
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gap> NumberOfHomomorphisms(Qgranny,Q);

24

5.3 Aspherical 2-complexes

The following example uses Polymake’s linear programming routines to establish that the 2-complex
associated to the group presentation < x,y,z : xyx = yxy, yzy = zyz, xzx = zxz > is aspherical (that is,
has contractible universal cover). The presentation is Tietze equivalent to the presentation used in the
computer code, and the associated 2-complexes are thus homotopy equivalent.

Example
gap> F:=FreeGroup(6);;

gap> x:=F.1;;y:=F.2;;z:=F.3;;a:=F.4;;b:=F.5;;c:=F.6;;

gap> rels:=[a^-1*x*y, b^-1*y*z, c^-1*z*x, a*x*(y*a)^-1,

> b*y*(z*b)^-1, c*z*(x*c)^-1];;

gap> Print(IsAspherical(F,rels),"\n");

Presentation is aspherical.

true

5.4 Bogomolov multiplier

The Bogomolov multiplier of a group is an isoclinism invariant. Using this property, the following ex-
ample shows that there are precisely three groups of order 243 with non-trivial Bogomolov multiplier.
The groups in question are numbered 28, 29 and 30 in GAP’s library of small groups of order 243.

Example
gap> L:=AllSmallGroups(3^5);;

gap> C:=IsoclinismClasses(L);;

gap> for c in C do

> if Length(BogomolovMultiplier(c[1]))>0 then

> Print(List(c,g->IdGroup(g)),"\n\n\n"); fi;

> od;

[ [ 243, 28 ], [ 243, 29 ], [ 243, 30 ] ]
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Cohomology of groups

6.1 Finite groups

The following example computes the fourth integral cohomomogy of the Mathieu group M24.
H4(M24,Z) = Z12

Example
gap> GroupCohomology(MathieuGroup(24),4);

[ 4, 3 ]

The following example computes the third integral homology of the Weyl group W =Weyl(E8), a
group of order 696729600.

H3(Weyl(E8),Z) = Z2⊕Z2⊕Z12
Example

p> L:=SimpleLieAlgebra("E",8,Rationals);;

gap> W:=WeylGroup(RootSystem(L));;

gap> Order(W);

696729600

gap> GroupHomology(W,3);

[ 2, 2, 4, 3 ]

The preceding calculation could be achieved more quickly by noting that W =Weyl(E8) is a Cox-
eter group, and by using the associated Coxeter polytope. The following example uses this approach
to compute the fourth integral homology of W . It begins by displaying the Coxeter diagram of W , and
then computes

H4(Weyl(E8),Z) = Z2⊕Z2⊕Z2⊕Z2.
Example

gap> D:=[[1,[2,3]],[2,[3,3]],[3,[4,3],[5,3]],[5,[6,3]],[6,[7,3]],[7,[8,3]]];;

gap> CoxeterDiagramDisplay(D);

Example
gap> polytope:=CoxeterComplex_alt(D,5);;

gap> R:=FreeGResolution(polytope,5);

Resolution of length 5 in characteristic 0 for <matrix group with

8 generators> .

27
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No contracting homotopy available.

gap> C:=TensorWithIntegers(R);

Chain complex of length 5 in characteristic 0 .

gap> Homology(C,4);

[ 2, 2, 2, 2 ]

The following example computes the sixth mod-2 homology of the Sylow 2-subgroup Syl2(M24)
of the Mathieu group M24.

H6(Syl2(M24),Z2) = Z143
2

Example
gap> GroupHomology(SylowSubgroup(MathieuGroup(24),2),6,2);

[ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,

2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,

2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,

2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,

2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,

2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,

2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 ]

The following example constructs the Poincare polynomial
p(x) = 1

−x3+3∗x2−3∗x+1
for the cohomology H∗(Syl2(M12,F2). The coefficient of xn in the expansion of p(x) is equal to

the dimension of the vector space Hn(Syl2(M12,F2). The computation involves SINGULAR’s Groebner
basis algorithms and the Lyndon-Hochschild-Serre spectral sequence.

Example
gap> G:=SylowSubgroup(MathieuGroup(12),2);;

gap> PoincareSeriesLHS(G);

(1)/(-x_1^3+3*x_1^2-3*x_1+1)

The following example constructs the polynomial
p(x) = x4−x3+x2−x+1

x6−x5+x4−2∗x3+x2−x+1
whose coefficient of xn is equal to the dimension of the vector space Hn(M11,F2) for all n in the

range 0≤ n≤ 14. The coefficient is not guaranteed correct for n≥ 15.
Example

gap> PoincareSeriesPrimePart(MathieuGroup(11),2,14);

(x_1^4-x_1^3+x_1^2-x_1+1)/(x_1^6-x_1^5+x_1^4-2*x_1^3+x_1^2-x_1+1)

6.2 Nilpotent groups

The following example computes
H4(N,Z) = (Z3)

4⊕Z84

for the free nilpotent group N of class 2 on four generators.
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Example
gap> F:=FreeGroup(4);; N:=NilpotentQuotient(F,2);;

gap> GroupHomology(N,4);

[ 3, 3, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]

6.3 Crystallographic groups

The following example computes
H5(G,Z) = Z2⊕Z2
for the 3-dimensional crystallographic space group G with Hermann-Mauguin symbol "P62"

Example
gap> GroupHomology(SpaceGroupBBNWZ("P62"),5);

[ 2, 2 ]

6.4 Arithmetic groups

The following example computes
H6(SL2(O,Z) = Z2
for O the ring of integers of the number field Q(

√
−2).

Example
gap> C:=ContractibleGcomplex("SL(2,O-2)");;

gap> R:=FreeGResolution(C,7);;

gap> Homology(TensorWithIntegers(R),6);

[ 2, 12 ]

6.5 Artin groups

The following example computes
H5(G,Z) = Z3
for G the classical braid group on eight strings.

Example
gap> D:=[[1,[2,3]],[2,[3,3]],[3,[4,3]],[4,[5,3]],[5,[6,3]],[6,[7,3]]];;

gap> CoxeterDiagramDisplay(D);;

Example
gap> R:=ResolutionArtinGroup(D,6);;

gap> C:=TensorWithIntegers(R);;

gap> Homology(C,5);

[ 3 ]
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6.6 Graphs of groups

The following example computes
H5(G,Z) = Z2⊕Z2⊕Z2⊕Z2⊕Z2
for G the graph of groups corresponding to the amalgamated product G = S5 ∗S3 S4 of the symmet-

ric groups S5 and S4 over the canonical subgroup S3.
Example

gap> S5:=SymmetricGroup(5);SetName(S5,"S5");

gap> S4:=SymmetricGroup(4);SetName(S4,"S4");

gap> A:=SymmetricGroup(3);SetName(A,"S3");

gap> AS5:=GroupHomomorphismByFunction(A,S5,x->x);

gap> AS4:=GroupHomomorphismByFunction(A,S4,x->x);

gap> D:=[S5,S4,[AS5,AS4]];

gap> GraphOfGroupsDisplay(D);

Example
gap> R:=ResolutionGraphOfGroups(D,6);;

gap> Homology(TensorWithIntegers(R),5);

[ 2, 2, 2, 2, 2 ]
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Cohomology operations

7.1 Steenrod operations on the classifying space of a finite 2-group

The following example determines a presentation for the cohomology ring H∗(Syl2(M12),Z2). The
Lyndon-Hochschild-Serre spectral sequence, and Groebner basis routines from SINGULAR, are used
to determine how much of a resolution to compute for the presentation.

Example
gap> G:=SylowSubgroup(MathieuGroup(12),2);;

gap> Mod2CohomologyRingPresentation(G);

Graded algebra GF(2)[ x_1, x_2, x_3, x_4, x_5, x_6, x_7 ] /

[ x_2*x_3, x_1*x_2, x_2*x_4, x_3^3+x_3*x_5,

x_1^2*x_4+x_1*x_3*x_4+x_3^2*x_4+x_3^2*x_5+x_1*x_6+x_4^2+x_4*x_5,

x_1^2*x_3^2+x_1*x_3*x_5+x_3^2*x_5+x_3*x_6,

x_1^3*x_3+x_3^2*x_4+x_3^2*x_5+x_1*x_6+x_3*x_6+x_4*x_5,

x_1*x_3^2*x_4+x_1*x_3*x_6+x_1*x_4*x_5+x_3*x_4^2+x_3*x_4*x_5+x_3*x_5^\

2+x_4*x_6, x_1^2*x_3*x_5+x_1*x_3^2*x_5+x_3^2*x_6+x_3*x_5^2,

x_3^2*x_4^2+x_3^2*x_5^2+x_1*x_5*x_6+x_3*x_4*x_6+x_4*x_5^2,

x_1*x_3*x_4^2+x_1*x_3*x_4*x_5+x_1*x_3*x_5^2+x_3^2*x_5^2+x_1*x_4*x_6+\

x_2^2*x_7+x_2*x_5*x_6+x_3*x_4*x_6+x_3*x_5*x_6+x_4^2*x_5+x_4*x_5^2+x_6^\

2, x_1*x_3^2*x_6+x_3^2*x_4*x_5+x_1*x_5*x_6+x_4*x_5^2,

x_1^2*x_3*x_6+x_1*x_5*x_6+x_2^2*x_7+x_2*x_5*x_6+x_3*x_5*x_6+x_6^2

] with indeterminate degrees [ 1, 1, 1, 2, 2, 3, 4 ]

The command CohomologicalData(G,n) prints complete information for the cohomology ring
H∗(G,Z2) of a 2-group G provided that the integer n is at least the maximal degree of a relator in
a minimal set of relators for the ring. Groebner basis routines from SINGULAR are called involved in
the example.

The following example produces complete information on the Steenrod algebra of group number
8 in GAP’s library of groups of order 32.

Example
Group number: 8

Group description: C2 . ((C4 x C2) : C2) = (C2 x C2) . (C4 x C2)

Cohomology generators

Degree 1: a, b

Degree 2: c, d

31
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Degree 3: e

Degree 5: f, g

Degree 6: h

Degree 8: p

Cohomology relations

1: f^2

2: c*h+e*f

3: c*f

4: b*h+c*g

5: b*e+c*d

6: a*h

7: a*g

8: a*f+b*f

9: a*e+c^2

10: a*c

11: a*b

12: a^2

13: d*e*h+e^2*g+f*h

14: d^2*h+d*e*f+d*e*g+f*g

15: c^2*d+b*f

16: b*c*g+e*f

17: b*c*d+c*e

18: b^2*g+d*f

19: b^2*c+c^2

20: b^3+a*d

21: c*d^2*e+c*d*g+d^2*f+e*h

22: c*d^3+d*e^2+d*h+e*f+e*g

23: b^2*d^2+c*d^2+b*f+e^2

24: b^3*d

25: d^3*e^2+d^2*e*f+c^2*p+h^2

26: d^4*e+b*c*p+e^2*g+g*h

27: d^5+b*d^2*g+b^2*p+f*g+g^2

Poincare series

(x^5+x^2+1)/(x^8-2*x^7+2*x^6-2*x^5+2*x^4-2*x^3+2*x^2-2*x+1)

Steenrod squares

Sq^1(c)=0

Sq^1(d)=b*b*b+d*b

Sq^1(e)=c*b*b

Sq^2(e)=e*d+f

Sq^1(f)=c*d*b*b+d*d*b*b

Sq^2(f)=g*b*b

Sq^4(f)=p*a

Sq^1(g)=d*d*d+g*b

Sq^2(g)=0

Sq^4(g)=c*d*d*d*b+g*d*b*b+g*d*d+p*a+p*b

Sq^1(h)=c*d*d*b+e*d*d

Sq^2(h)=d*d*d*b*b+c*d*d*d+g*c*b

Sq^4(h)=d*d*d*d*b*b+g*e*d+p*c

Sq^1(p)=c*d*d*d*b
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Sq^2(p)=d*d*d*d*b*b+c*d*d*d*d

Sq^4(p)=d*d*d*d*d*b*b+d*d*d*d*d*d+g*d*d*d*b+g*g*d+p*d*d

7.2 Steenrod operations on the classifying space of a finite p-group

The following example constructs the first eight degrees of the mod-3 cohomology ring H∗(G,Z3) for
the group G number 4 in GAP’s library of groups of order 81. It determines a minimal set of ring
generators lying in degree ≤ 8 and it evaluates the Bockstein operator on these generators. Steenrod
powers for p≥ 3 are not implemented as no efficient method of implementation is known.

Example
gap> G:=SmallGroup(81,4);;

gap> A:=ModPSteenrodAlgebra(G,8);;

gap> List(ModPRingGenerators(A),x->Bockstein(A,x));

[ 0*v.1, 0*v.1, v.5, 0*v.1, (Z(3))*v.7+v.8+(Z(3))*v.9 ]
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Bredon homology

8.1 Davis complex

The following example computes the Bredon homology
H0(W,R) = Z21

for the infinite Coxeter group W associated to the Dynkin diagram shown in the computation, with
coefficients in the complex representation ring.

Example
gap> D:=[[1,[2,3]],[2,[3,3]],[3,[4,3]],[4,[5,6]]];;

gap> CoxeterDiagramDisplay(D);

Example
gap> C:=DavisComplex(D);;

gap> D:=TensorWithComplexRepresentationRing(C);;

gap> Homology(D,0);

[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]

8.2 Arithmetic groups

The following example computes the Bredon homology
H0(SL2(O−3),R) = Z2⊕Z9

H1(SL2(O−3),R) = Z
for O−3 the ring of integers of the number field Q(

√
−3), and R the complex reflection ring.

Example
gap> R:=ContractibleGcomplex("SL(2,O-3)");;

gap> IsRigid(R);

false

gap> S:=BaryCentricSubdivision(R);;

gap> IsRigid(S);

true

gap> C:=TensorWithComplexRepresentationRing(S);;

gap> Homology(C,0);

[ 2, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]

gap> Homology(C,1);
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[ 0 ]

8.3 Crystallographic groups

The following example computes the Bredon homology
H0(G,R) = Z17

for G the second crystallographic group of dimension 4 in GAP’s library of crystallographic
groups, and for R the Burnside ring.

Example
gap> G:=SpaceGroup(4,2);;

gap> gens:=GeneratorsOfGroup(G);;

gap> B:=CrystGFullBasis(G);;

gap> R:=CrystGcomplex(gens,B,1);;

gap> IsRigid(R);

false

gap> S:=CrystGcomplex(gens,B,0);;

gap> IsRigid(S);

true

gap> D:=TensorWithBurnsideRing(S);;

gap> Homology(D,0);

[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]
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Simplicial groups

9.1 Crossed modules

The following example concerns the crossed module
∂ :G→ Aut(G),g 7→ (x 7→ gxg−1)
associated to the dihedral group G of order 16. This crossed module represents, up to homotopy

type, a connected space X with πiX = 0 for i ≥ 3, π2X = Z(G), π1X = Aut(G)/Inn(G). The space
X can be represented, up to homotopy, by a simplicial group. That simplicial group is used in the
example to compute

H1(X ,Z) = Z2⊕Z2,
H2(X ,Z) = Z2,
H3(X ,Z) = Z2⊕Z2⊕Z2,
H4(X ,Z) = Z2⊕Z2⊕Z2,
H5(X ,Z) = Z2⊕Z2⊕Z2⊕Z2⊕Z2⊕Z2.
The simplicial group is obtained by viewing the crossed module as a crossed complex and using a

nonabelian version of the Dold-Kan theorem.
Example

gap> C:=AutomorphismGroupAsCatOneGroup(DihedralGroup(16));

Cat-1-group with underlying group Group(

[ f1, f2, f3, f4, f5, f6, f7, f8, f9 ] ) .

gap> Size(C);

512

gap> Q:=QuasiIsomorph(C);

Cat-1-group with underlying group Group( [ f9, f8, f1, f2*f3, f5 ] ) .

gap> Size(Q);

32

gap> N:=NerveOfCatOneGroup(Q,6);

Simplicial group of length 6

gap> K:=ChainComplexOfSimplicialGroup(N);

Chain complex of length 6 in characteristic 0 .

gap> Homology(K,1);

[ 2, 2 ]
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gap> Homology(K,2);

[ 2 ]

gap> Homology(K,3);

[ 2, 2, 2 ]

gap> Homology(K,4);

[ 2, 2, 2 ]

gap> Homology(K,5);

[ 2, 2, 2, 2, 2, 2 ]

9.2 Eilenberg-MacLane spaces

The following example concerns the Eilenberg-MacLane space X =K(Z,3) which is a path-connected
space with π3X = Z, πiX = 0 for 3 6= i ≥ 1. This space is represented by a simplicial group, and
perturbation techniques are used to compute

H7(X ,Z) = Z3.
Example

gap> A:=AbelianPcpGroup([0]);;AbelianInvariants(A);

[ 0 ]

gap> K:=EilenbergMacLaneSimplicialGroup(A,3,8);

Simplicial group of length 8

gap> C:=ChainComplexOfSimplicialGroup(K);

Chain complex of length 8 in characteristic 0 .

gap> Homology(C,7);

[ 3 ]
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Congruence Subgroups, Cuspidal
Cohomology and Hecke Operators

In this chapter we explain how HAP can be used to make computions about modular forms associated
to congruence subgroups Γ of SL2(Z). Also, in Subsection 10.8 onwards, we demonstrate cohomology
computations for the Picard group SL2(Z[i]), some Bianchi groups PSL2(O−d) where Od is the ring
of integers of Q(

√
−d) for square free positive integer d, and some other groups of the form SLm(O),

GLm(O), PSLm(O), PGLm(O), for m = 2,3,4 and certain O = Z,O−d .

10.1 Eichler-Shimura isomorphism

We begin by recalling the Eichler-Shimura isomorphism [Eic57][Shi59]

Sk(Γ)⊕Sk(Γ)⊕Ek(Γ)∼=Hecke H1(Γ,PC(k−2))

which relates the cohomology of groups to the theory of modular forms associated to a finite index
subgroup Γ of SL2(Z). In subsequent sections we explain how to compute with the right-hand side of
the isomorphism. But first, for completeness, let us define the terms on the left-hand side.

Let N be a positive integer. A subgroup Γ of SL2(Z) is said to be a congruence subgroup of
level N if it contains the kernel of the canonical homomorphism πN :SL2(Z)→ SL2(Z/NZ). So any
congruence subgroup is of finite index in SL2(Z), but the converse is not true.

One congruence subgroup of particular interest is the group Γ1(N) = ker(πN), known as the prin-
cipal congruence subgroup of level N. Another congruence subgroup of particular interest is the group
Γ0(N) of those matrices that project to upper triangular matrices in SL2(Z/NZ).

A modular form of weight k for a congruence subgroup Γ is a complex valued function on the
upper-half plane, f :h= {z ∈ C : Re(z)> 0}→ C, satisfying:

• f (
az+b
cz+d

) = (cz+d)k f (z) for
(

a b
c d

)
∈ Γ,

• f is ‘holomorphic’ on the extended upper-half plane h∗ = h∪Q∪{∞} obtained from the upper-
half plane by ‘adjoining a point at each cusp’.

The collection of all weight k modular forms for Γ form a vector space Mk(Γ) over C.

38
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A modular form f is said to be a cusp form if f (∞) = 0. The collection of all weight k cusp forms
for Γ form a vector subspace Sk(Γ). There is a decomposition

Mk(Γ)∼= Sk(Γ)⊕Ek(Γ)

involving a summand Ek(Γ) known as the Eisenstein space. See [Ste07] for further introductory
details on modular forms.

The Eichler-Shimura isomorphism is more than an isomorphism of vector spaces. It is an isomor-
phism of Hecke modules: both sides admit notions of Hecke operators, and the isomorphism preserves
these operators. The bar on the left-hand side of the isomorphism denotes complex conjugation, or
anti-holomorphic forms. See [Wie78] for a full account of the isomorphism.

On the right-hand side of the isomorphism, the ZΓ-module PC(k−2)⊂ C[x,y] denotes the space
of homogeneous degree k−2 polynomials with action of Γ given by(

a b
c d

)
· p(x,y) = p(dx−by,−cx+ay) .

In particular PC(0) = C is the trivial module. Below we shall compute with the integral analogue
PZ(k−2)⊂ Z[x,y].

In the following sections we explain how to use the right-hand side of the Eichler-Shimura iso-
morphism to compute eigenvalues of the Hecke operators restricted to the subspace Sk(Γ) of cusp
forms.

10.2 Generators for SL2(Z) and the cubic tree

The matrices S =

(
0 −1
1 0

)
and T =

(
1 1
0 1

)
generate SL2(Z) and it is not difficult to devise

an algorithm for expressing an arbitrary integer matrix A of determinant 1 as a word in S, T and their
inverses. The following illustrates such an algorithm.

Example
gap> A:=[[4,9],[7,16]];;

gap> word:=AsWordInSL2Z(A);

[ [ [ 1, 0 ], [ 0, 1 ] ], [ [ 0, 1 ], [ -1, 0 ] ], [ [ 1, -1 ], [ 0, 1 ] ],

[ [ 0, 1 ], [ -1, 0 ] ], [ [ 1, 1 ], [ 0, 1 ] ], [ [ 0, 1 ], [ -1, 0 ] ],

[ [ 1, -1 ], [ 0, 1 ] ], [ [ 1, -1 ], [ 0, 1 ] ], [ [ 1, -1 ], [ 0, 1 ] ],

[ [ 0, 1 ], [ -1, 0 ] ], [ [ 1, 1 ], [ 0, 1 ] ], [ [ 1, 1 ], [ 0, 1 ] ] ]

gap> Product(word);

[ [ 4, 9 ], [ 7, 16 ] ]

It is convenient to introduce the matrix U = ST =

(
0 −1
1 1

)
. The matrices S and U also generate

SL2(Z). In fact we have a free presentation SL2(Z) = 〈S,U |S4 =U6 = 1〉.
The cubic tree T is a tree (i.e. a 1-dimensional contractible regular CW-complex) with countably

infinitely many edges in which each vertex has degree 3. We can realize the cubic tree T by taking the
left cosets of U = 〈U〉 in SL2(Z) as vertices, and joining cosets xU and yU by an edge if, and only
if, x−1y ∈U SU . Thus the vertex U is joined to SU , USU and U2SU . The vertices of this tree are
in one-to-one correspondence with all reduced words in S, U and U2 that, apart from the identity, end
in S.
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From our realization of the cubic tree T we see that SL2(Z) acts on T in such a way that each
vertex is stabilized by a cyclic subgroup conjugate to U = 〈U〉 and each edge is stabilized by a cyclic
subgroup conjugate to S = 〈S〉.

In order to store this action of SL2(Z) on the cubic tree T we just need to record the following
finite amount of information.

10.3 One-dimensional fundamental domains and generators for con-
gruence subgroups

The modular group M = PSL2(Z) is isomorphic, as an abstract group, to the free product Z2 ∗Z3. By
the Kurosh subgroup theorem, any finite index subgroup M ⊂M is isomorphic to the free product of
finitely many copies of Z2s, Z3s and Zs. A subset x⊂M is an independent set of subgroup generators
if M is the free product of the cyclic subgroups < x > as x runs over x. Let us say that a set of ele-
ments in SL2(Z) is projectively independent if it maps injectively onto an independent set of subgroup
generators x⊂M . The generating set {S,U} for SL2(Z) given in the preceding section is projectively
independent.

We are interested in constructing a set of generators for a given congruence subgroup Γ. If a
small generating set for Γ is required then we should aim to construct one which is close to being
projectively independent.

It is useful to invoke the following general result which follows from a perturbation result about
free ZG-resolutons in [EHS06, Theorem 2] and an old observation of John Milnor that a free ZG-
resolution can be realized as the cellular chain complex of a CW-complex if it can be so realized in
low dimensions.

THEOREM. Let X be a contractible CW-complex on which a group G acts by permuting cells.
The cellular chain complex C∗X is a ZG-resolution of Z which typically is not free. Let [en] denote
the orbit of the n-cell en under the action. Let Gen ≤ G denote the stabilizer subgroup of en, in which
group elements are not required to stabilize en point-wise. Let Yen denote a contractible CW-complex
on which Gen

acts cellularly and freely. Then there exists a contractible CW-complex W on which G
acts cellularly and freely, and in which the orbits of n-cells are labelled by [ep]⊗ [ f q] where p+q = n
and [ep] ranges over the G-orbits of p-cells in X , [ f q] ranges over the Gep

-orbits of q-cells in Yep .
Let W be as in the theorem. Then the quotient CW-complex BG =W/G is a classifying space for

G. Let T denote a maximal tree in the 1-skeleton B1
G. Basic geometric group theory tells us that the

1-cells in B1
G \T correspond to a generating set for G.

Suppose we wish to compute a set of generators for a principal congruence subgroup Γ = Γ1(N).
In the above theorem take X = T to be the cubic tree, and note that Γ acts freely on T and thus that
W = T . To determine the 1-cells of BΓ \T we need to determine a cellular subspace DΓ ⊂ T whose
images under the action of Γ cover T and are pairwise either disjoint or identical. The subspace DΓ

will not be a CW-complex as it won’t be closed, but it can be chosen to be connected, and hence
contractible. We call DΓ a fundamental region for Γ. We denote by D̊Γ the largest CW-subcomplex
of DΓ. The vertices of D̊Γ are the same as the vertices of DΓ. Thus D̊Γ is a subtree of the cubic tree
with |Γ|/6 vertices. For each vertex v in the tree D̊Γ define η(v) = 3−degree(v). Then the number of
generators for Γ will be (1/2)∑v∈D̊Γ

η(v).
The following commands determine projectively independent generators for Γ1(6) and display

D̊Γ1(6). The subgroup Γ1(6) is free on 13 generators.
Example

gap> G:=HAP_PrincipalCongruenceSubgroup(6);;
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gap> gens:=GeneratorsOfGroup(G);

[ [ [ -83, -18 ], [ 60, 13 ] ], [ [ -77, -18 ], [ 30, 7 ] ],

[ [ -65, -12 ], [ 168, 31 ] ], [ [ -53, -12 ], [ 84, 19 ] ],

[ [ -47, -18 ], [ 222, 85 ] ], [ [ -41, -12 ], [ 24, 7 ] ],

[ [ -35, -6 ], [ 6, 1 ] ], [ [ -11, -18 ], [ 30, 49 ] ],

[ [ -11, -6 ], [ 24, 13 ] ], [ [ -5, -18 ], [ 12, 43 ] ],

[ [ -5, -12 ], [ 18, 43 ] ], [ [ -5, -6 ], [ 6, 7 ] ],

[ [ 1, 0 ], [ -6, 1 ] ] ]

An alternative but very related approach to computing generators of congruence subgroups of
SL2(Z) is described in [Kul91].

The congruence subgroup Γ0(N) does not act freely on the vertices of T , and so one needs to
incorporate a generator for the cyclic stabilizer group according to the above theorem. Alternatively,
we can replace the cubic tree by a six-fold cover T ′ on whose vertex set Γ0(N) acts freely. This
alternative approach will produce a redundant set of generators. The following commands display
D̊Γ0(39) for a fundamental region in T ′. They also use the corresponding generating set for Γ0(39),
involving 18 generators, to compute the abelianization Γ0(39)ab = Z2⊕Z2

3⊕Z9. The abelianization
shows that any generating set has at least 11 generators.

Example
gap> G:=HAP_CongruenceSubgroupGamma0(39);;

gap> HAP_SL2TreeDisplay(G);

gap> Length(GeneratorsOfGroup(G));

18

gap> AbelianInvariants(G);

[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 3, 3 ]

Note that to compute DΓ one only needs to be able to test whether a given matrix lies in Γ or not.
Given an inclusion Γ′ ⊂ Γ of congruence subgroups, it is straightforward to use the trees D̊Γ′ and D̊Γ

to compute a system of coset representative for Γ′ \Γ.

10.4 Cohomology of congruence subgroups

To compute the cohomology Hn(Γ,A) of a congruence subgroup Γ with coefficients in a ZΓ-module A
we need to construct n+1 terms of a free ZG-resolution of Z. We can do this by first using perturbation
techniques (as described in [BE14]) to combine the cubic tree with resolutions for the cyclic groups
of order 4 and 6 in order to produce a free ZG-resolution R∗ for G = SL2(Z). This resolution is also a
free ZΓ-resolution with each term of rank

rankZΓRk = |G : Γ|× rankZGRk .

For congruence subgroups of lowish index in G this resolution suffices to make computations.
The following commands compute

H1(Γ0(39),Z) = Z9 .

Example
gap> R:=ResolutionSL2Z_alt(2);

Resolution of length 2 in characteristic 0 for SL(2,Integers) .
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gap> gamma:=HAP_CongruenceSubgroupGamma0(39);;

gap> S:=ResolutionFiniteSubgroup(R,gamma);

Resolution of length 2 in characteristic 0 for

CongruenceSubgroupGamma0( 39) .

gap> Cohomology(HomToIntegers(S),1);

[ 0, 0, 0, 0, 0, 0, 0, 0, 0 ]

This computation establishes that the space M2(Γ0(39)) of weight 2 modular forms is of dimension
9.

The following commands show that rankZΓ0(39)R1 = 112 but that it is possible to apply ‘Tietze
like’ simplifications to R∗ to obtain a free ZΓ0(39)-resolution T∗ with rankZΓ0(39)T1 = 11. It is more
efficient to work with T∗ when making cohomology computations with coefficients in a module A of
large rank.

Example
gap> S!.dimension(1);

112

gap> T:=TietzeReducedResolution(S);

Resolution of length 2 in characteristic 0 for CongruenceSubgroupGamma0(

39) .

gap> T!.dimension(1);

11

The following commands compute

H1(Γ0(39),PZ(8)) = Z3⊕Z6⊕Z168⊕Z84 ,

H1(Γ0(39),PZ(9)) = Z2⊕Z2.

Example
gap> P:=HomogeneousPolynomials(gamma,8);;

gap> c:=Cohomology(HomToIntegralModule(T,P),1);

[ 3, 6, 168, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]

gap> Length(c);

87

gap> P:=HomogeneousPolynomials(gamma,9);;

gap> c:=Cohomology(HomToIntegralModule(T,P),1);

[ 2, 2 ]

This computation establishes that the space M10(Γ0(39)) of weight 10 modular forms is of dimen-
sion 84, and M11(Γ0(39)) is of dimension 0. (There are never any modular forms of odd weight, and
so Mk(Γ) = 0 for all odd k and any congruence subgroup Γ.)
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10.5 Cuspidal cohomology

To define and compute cuspidal cohomology we consider the action of SL2(Z) on the upper-half plane
h given by (

a b
c d

)
z =

az+b
cz+d

.

A standard ’fundamental domain’ for this action is the region

D = {z ∈ h : |z|> 1, |Re(z)|< 1
2}

∪ {z ∈ h : |z| ≥ 1,Re(z) =−1
2}

∪ {z ∈ h : |z|= 1,−1
2 ≤ Re(z)≤ 0}

illustrated below.

The action factors through an action of PSL2(Z) = SL2(Z)/〈
(
−1 0

0 −1

)
〉. The images of D

under the action of PSL2(Z) cover the upper-half plane, and any two images have at most a single point
in common. The possible common points are the bottom left-hand corner point which is stabilized by
〈U〉, and the bottom middle point which is stabilized by 〈S〉.

A congruence subgroup Γ has a ‘fundamental domain’ DΓ equal to a union of finitely many copies
of D, one copy for each coset in Γ\SL2(Z). The quotient space X = Γ\h is not compact, and can be
compactified in several ways. We are interested in the Borel-Serre compactification. This is a space
XBS for which there is an inclusion X ↪→ XBS and this inclusion is a homotopy equivalence. One
defines the boundary ∂XBS = XBS−X and uses the inclusion ∂XBS ↪→ XBS ' X to define the cuspidal
cohomology group, over the ground ring C, as

Hn
cusp(Γ,PC(k−2)) = ker( Hn(X ,PC(k−2))→ Hn(∂XBS,PC(k−2)) ).

Strictly speaking, this is the definition of interior cohomology Hn
! (Γ,PC(k− 2)) which in general

contains the cuspidal cohomology as a subgroup. However, for congruence subgroups of SL2(Z) there
is equality Hn

! (Γ,PC(k−2)) = Hn
cusp(Γ,PC(k−2)).

Working over C has the advantage of avoiding the technical issue that Γ does not necessarily
act freely on h since there are points with finite cyclic stabilizer groups in SL2(Z). But it has the
disadvantage of losing information about torsion in cohomology. So HAP confronts the issue by
working with a contractible CW-complex X̃BS on which Γ acts freely, and Γ-equivariant inclusion
∂ X̃BS ↪→ X̃BS. The definition of cuspidal cohomology that we use, which coincides with the above
definition when working over C, is

Hn
cusp(Γ,A) = ker( Hn(HomZΓ(C∗(X̃BS),A))→ Hn( HomZΓ(C∗(∂̃XBS),A) ).

The following data is recorded and, using perturbation theory, is combined with free resolutions
for C4 and C6 to constuct X̃BS.

The following commands calculate

H1
cusp(Γ0(39),Z) = Z6 .

Example
gap> gamma:=HAP_CongruenceSubgroupGamma0(39);;

gap> k:=2;; deg:=1;; c:=CuspidalCohomologyHomomorphism(gamma,deg,k);

[ g1, g2, g3, g4, g5, g6, g7, g8, g9 ] -> [ g1^-1*g3, g1^-1*g3, g1^-1*g3,

g1^-1*g3, g1^-1*g2, g1^-1*g3, g1^-1*g4, g1^-1*g4, g1^-1*g4 ]
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gap> AbelianInvariants(Kernel(c));

[ 0, 0, 0, 0, 0, 0 ]

From the Eichler-Shimura isomorphism and the already calculated dimension of M2(Γ0(39)) ∼= C9,
we deduce from this cuspidal cohomology that the space S2(Γ0(39)) of cuspidal weight 2 forms is of
dimension 3, and the Eisenstein space E2(Γ0(39))∼= C3 is of dimension 3.

The following commands show that the space S4(Γ0(39)) of cuspidal weight 4 forms is of dimen-
sion 12.

Example
gap> gamma:=HAP_CongruenceSubgroupGamma0(39);;

gap> k:=4;; deg:=1;; c:=CuspidalCohomologyHomomorphism(gamma,deg,k);;

gap> AbelianInvariants(Kernel(c));

[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]

10.6 Hecke operators

A congruence subgroup Γ≤ SLm(Z) and element g∈ SLm(Q) determine the subgroup Γ′ = Γ∩gΓg−1

and homomorphisms

Γ ←↩ Γ
′ γ 7→g−1γg−→ g−1

Γ
′g ↪→ Γ .

These homomorphisms give rise to homomorphisms of cohomology groups

Hn(Γ,Z) tr← Hn(Γ′,Z) α← Hn(g−1
Γ
′g,Z) β← Hn(Γ,Z)

with α , β functorial maps, and tr the transfer map. We define the composite Tg = tr ◦ α ◦
β :Hn(Γ,Z)→Hn(Γ,Z) to be the Hecke operator determined by g. Further details on this description
of Hecke operators can be found in [Ste07, Appendix by P. Gunnells].

For each integer s≥ 1 we set Ts = Ts with for g =

(
1 0
0 1

s

)
.

The following commands compute T2 and T5 for n = 1 and Γ = Γ0(39). The commands also
compute the eigenvalues of these two Hecke operators. The final command confirms that T2 and T5
commute. (It is a fact that TpTq = TqTp for all integers p,q.)

Example
gap> gamma:=HAP_CongruenceSubgroupGamma0(39);;

gap> p:=2;;N:=1;;h:=HeckeOperator(gamma,p,N);;

gap> AbelianInvariants(Source(h));

[ 0, 0, 0, 0, 0, 0, 0, 0, 0 ]

gap> T2:=HomomorphismAsMatrix(h);;

gap> Display(T2);

[ [ -2, -2, 2, 2, 1, 2, 0, 0, 0 ],

[ -2, 0, 1, 2, -2, 2, 2, 2, -2 ],

[ -2, -1, 2, 2, -1, 2, 1, 1, -1 ],

[ -2, -1, 2, 2, 1, 1, 0, 0, 0 ],

[ -1, 0, 0, 2, -3, 2, 3, 3, -3 ],

[ 0, 1, 1, 1, -1, 0, 1, 1, -1 ],

[ -1, 1, 1, -1, 0, 1, 2, -1, 1 ],

[ -1, -1, 0, 2, -3, 2, 1, 4, -1 ],
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[ 0, 1, 0, -1, -2, 1, 1, 1, 2 ] ]

gap> Eigenvalues(Rationals,T2);

[ 3, 1 ]

gap> p:=5;;N:=1;;h:=HeckeOperator(gamma,p,N);;

gap> T5:=HomomorphismAsMatrix(h);;

gap> Display(T5);

[ [ -1, -1, 3, 4, 0, 0, 1, 1, -1 ],

[ -5, -1, 5, 4, 0, 0, 3, 3, -3 ],

[ -2, 0, 4, 4, 1, 0, -1, -1, 1 ],

[ -2, 0, 3, 2, -3, 2, 4, 4, -4 ],

[ -4, -2, 4, 4, 3, 0, 1, 1, -1 ],

[ -6, -4, 5, 6, 1, 2, 2, 2, -2 ],

[ 1, 5, 0, -4, -3, 2, 5, -1, 1 ],

[ -2, -2, 2, 4, 0, 0, -2, 4, 2 ],

[ 1, 3, 0, -4, -4, 2, 2, 2, 4 ] ]

gap> Eigenvalues(Rationals,T5);

[ 6, 2 ]

gap>T2*T5=T5*T2;

true

10.7 Reconstructing modular forms from cohomology computations

Given a modular form f :h→ C associated to a congruence subgroup Γ, and given a compact edge e
in the tessellation of h (i.e. an edge in the cubic tree T ) arising from the above fundamental domain
for SL2(Z), we can evaluate ∫

e
f (z)dz .

In this way we obtain a cochain f1:C1(T ) → C in HomZΓ(C1(T ),C) representing a cohomol-
ogy class c( f ) ∈ H1(HomZΓ(C∗(T ),C)) = H1(Γ,C). The correspondence f 7→ c( f ) underlies the
Eichler-Shimura isomorphism. Hecke operators can be used to recover modular forms from cohomol-
ogy classes.

Hecke operators restrict to operators on cuspidal cohomology. On the left-hand side of the Eichler-
Shimura isomorphism Hecke operators restrict to operators Ts:S2(Γ)→ S2(Γ) for s≥ 1.

Let us now introduce the function q = q(z) = e2πiz which is holomorphic on C. For any modular
form f (z) there are numbers an such that

f (z) =
∞

∑
s=0

asqs

for all z ∈ h. The form f is a cusp form if a0 = 0.
A non-zero cusp form f ∈ S2(Γ) is an eigenform if it is simultaneously an eigenvector for the

Hecke operators Ts for all s = 1,2,3, · · ·. An eigenform is said to be normalized if its coefficient
a1 = 1. It turns out that if f is a normalized eigenform then the coefficient as is an eigenvalue for Ts

(see for instance [Ste07] for details). It can be shown [AL70] that f ∈ S2(Γ0(N)) admits a basis of
eigenforms.
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This all implies that, in principle, we can construct an approximation to an explicit basis for the
space S2(Γ) of cusp forms by computing eigenvalues for Hecke operators.

Suppose that we would like a basis for S2(Γ0(11)). The following commands first show that
H1

cusp(Γ0(11),Z) = Z⊕Z from which we deduce that S2(Γ0(11)) = C is 1-dimensional. Then eigen-
values of Hecke operators are calculated to establish that the modular form

f = q−2q2−q3 +q4 +q5 +2q6−2q7 +2q8−3q9−2q10 + · · ·

constitutes a basis for S2(Γ0(11)).
Example

gap> gamma:=HAP_CongruenceSubgroupGamma0(11);;

gap> AbelianInvariants(Kernel(CuspidalCohomologyHomomorphism(gamma,1,2)));

[ 0, 0 ]

gap> T1:=HomomorphismAsMatrix(HeckeOperator(gamma,1,1));; Display(T1);

[ [ 1, 0, 0 ],

[ 0, 1, 0 ],

[ 0, 0, 1 ] ]

gap> T2:=HomomorphismAsMatrix(HeckeOperator(gamma,2,1));; Display(T2);

[ [ 3, -4, 4 ],

[ 0, -2, 0 ],

[ 0, 0, -2 ] ]

gap> T3:=HomomorphismAsMatrix(HeckeOperator(gamma,3,1));; Display(T3);

[ [ 4, -4, 4 ],

[ 0, -1, 0 ],

[ 0, 0, -1 ] ]

gap> T4:=HomomorphismAsMatrix(HeckeOperator(gamma,4,1));; Display(T4);

[ [ 6, -4, 4 ],

[ 0, 1, 0 ],

[ 0, 0, 1 ] ]

gap> T5:=HomomorphismAsMatrix(HeckeOperator(gamma,5,1));; Display(T5);

[ [ 6, -4, 4 ],

[ 0, 1, 0 ],

[ 0, 0, 1 ] ]

gap> T6:=HomomorphismAsMatrix(HeckeOperator(gamma,6,1));; Display(T6);

[ [ 12, -8, 8 ],

[ 0, 2, 0 ],

[ 0, 0, 2 ] ]

gap> T7:=HomomorphismAsMatrix(HeckeOperator(gamma,7,1));; Display(T7);

[ [ 8, -8, 8 ],

[ 0, -2, 0 ],

[ 0, 0, -2 ] ]

gap> T8:=HomomorphismAsMatrix(HeckeOperator(gamma,8,1));; Display(T8);

[ [ 12, -8, 8 ],

[ 0, 2, 0 ],

[ 0, 0, 2 ] ]

gap> T9:=HomomorphismAsMatrix(HeckeOperator(gamma,9,1));; Display(T9);

[ [ 12, -12, 12 ],

[ 0, -3, 0 ],

[ 0, 0, -3 ] ]

gap> T10:=HomomorphismAsMatrix(HeckeOperator(gamma,10,1));; Display(T10);

[ [ 18, -16, 16 ],
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[ 0, -2, 0 ],

[ 0, 0, -2 ] ]

For a normalized eigenform f = 1+∑
∞
s=2 asqs the coefficients as with s a composite integer can

be expressed in terms of the coefficients ap for prime p. If r,s are coprime then Trs = TrTs. If p is a
prime that is not a divisor of the level N of Γ then apm = apm−1ap− papm−2 . If the prime p divides N
then apm = (ap)

m. It thus suffices to compute the coefficients ap for prime integers p only.

10.8 The Picard group

Let us now consider the Picard group G = SL2(Z[i]) and its action on upper-half space

h3 = {(z, t) ∈ C×R | t > 0} .

To describe the action we introduce the symbol j satisfying j2 =−1, i j =− ji and write z+ t j instead
of (z, t). The action is given by(

a b
c d

)
· (z+ t j) = (a(z+ t j)+b)(c(z+ t j)+d)−1 .

Alternatively, and more explicitly, the action is given by(
a b
c d

)
· (z+ t j) =

(az+b)(cz+d)+acy2

|cz+d|2 + |c|2y2 +
y

|cz+d|2 + |c|2y2 j .

A standard ’fundamental domain’ D for this action is the following region (with some of the
boundary points removed).

{z+ t j ∈ h3 | 0≤ |Re(z)| ≤ 1
2
,0≤ Im(z)≤ 1

2
,zz+ t2 ≥ 1}

The four bottom vertices of D are a =−1
2 +

1
2 i+

√
2

2 j, b =−1
2 +

√
3

2 j, c = 1
2 +

√
3

2 j, d = 1
2 +

1
2 i+√

2
2 j.

The upper-half space h3 can be retracted onto a 2-dimensional subspace T ⊂ h3. The space T is
a contractible 2-dimensional regular CW-complex, and the action of the Picard group G restricts to a
cellular action of G on T . Under this action there is one orbit of 2-cells, represented by the curvilinear
square with vertices a, b, c and d in the picture. This 2-cell has stabilizer group isomorphic to the
quaternion group Q4 of order 8. There are two orbits of 1-cells, both with stabilizer group isomorphic
to a semi-direct product C3 : C4. There is one orbit of 0-cells, with stabilizer group isomorphic to
SL(2,3).

Using perturbation techniques, the 2-complex T can be combined with free resolutions for the
cell stabilizer groups to contruct a regular CW-complex X on which the Picard group G acts freely.
The following commands compute the first few terms of the free ZG-resolution R∗ =C∗X . Then R∗ is
used to compute

H1(G,Z) = 0 ,

H2(G,Z) = Z2⊕Z2 ,
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H3(G,Z) = Z6 ,

H4(G,Z) = Z4⊕Z24 ,

and compute a free presentation for G involving four generators and seven relators.
Example

gap> K:=ContractibleGcomplex("SL(2,O-1)");;

gap> R:=FreeGResolution(K,5);;

gap> Cohomology(HomToIntegers(R),1);

[ ]

gap> Cohomology(HomToIntegers(R),2);

[ 2, 2 ]

gap> Cohomology(HomToIntegers(R),3);

[ 6 ]

gap> Cohomology(HomToIntegers(R),4);

[ 4, 24 ]

gap> P:=PresentationOfResolution(R);

rec( freeGroup := <free group on the generators [ f1, f2, f3, f4 ]>,

gens := [ 184, 185, 186, 187 ],

relators := [ f1^2*f2^-1*f1^-1*f2^-1, f1*f2*f1*f2^-2,

f3*f2^2*f1*(f2*f1^-1)^2*f3^-1*f1^2*f2^-2,

f1*(f2*f1^-1)^2*f3^-1*f1^2*f2^-1*f3^-1,

f4*f2*f1*(f2*f1^-1)^2*f4^-1*f1*f2^-1, f1*f4^-1*f1^-2*f4^-1,

f3*f2*f1*(f2*f1^-1)^2*f4^-1*f1*f2^-1*f3^-1*f4*f2 ] )

We can also compute the cohomology of G = SL2(Z[i]) with coefficients in a module such as the
module PZ[i](k) of degree k homogeneous polynomials with coefficients in Z[i] and with the action
described above. For instance, the following commands compute

H1(G,PZ[i](24)) = (Z2)
4⊕Z4⊕Z8⊕Z40⊕Z80 ,

H2(G,PZ[i](24)) = (Z2)
24⊕Z520030⊕Z1040060⊕Z2 ,

H3(G,PZ[i](24)) = (Z2)
22⊕Z4⊕ (Z12)

2 .

Example
gap> G:=R!.group;;

gap> M:=HomogeneousPolynomials(G,24);;

gap> C:=HomToIntegralModule(R,M);;

gap> Cohomology(C,1);

[ 2, 2, 2, 2, 4, 8, 40, 80 ]

gap> Cohomology(C,2);

[ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,

520030, 1040060, 0, 0 ]

gap> Cohomology(C,3);

[ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4, 12, 12

]
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10.9 Bianchi groups

The Bianchi groups are the groups G = PSL2(O−d) where d is a square free positive integer and O−d
is the ring of integers of the imaginary quadratic field Q(

√
−d). More explicitly,

O−d = Z
[√
−d
]

if d ≡ 1 mod 4 ,

O−d = Z
[

1+
√
−d

2

]
if d ≡ 2,3 mod 4 .

These groups act on upper-half space h3 in the same way as the Picard group. Upper-half space
can be tessellated by a ’fundamental domain’ for this action. Moreover, as with the Picard group,
this tessellation contains a 2-dimensional cellular subspace T ⊂ h3 where T is a contractible CW-
complex on which G acts cellularly. It should be mentioned that the fundamental domain and the
contractible 2-complex T are not uniquely determined by G. Various algorithms exist for computing
T and its cell stabilizers. One algorithm due to Swan [Swa71] has been implemented by Alexander
Rahm [Rah10] and the output for various values of d are stored in HAP. Another approach is to use
Voronoi’s theory of perfect forms. This approach has been implemented by Sebastian Schoennenbeck
[BCNS15] and, again, its output for various values of d are stored in HAP. The following commands
combine data from Schoennenbeck’s algorithm with free resolutions for cell stabiliers to compute

H1(PSL2(O−6),PO−6(24)) = (Z2)
4⊕Z12⊕Z24⊕Z9240⊕Z55440⊕Z4 ,

H2(PSL2(O−6),PO−6(24)) =

(Z2)
26⊕ (Z6)

8⊕ (Z12)
9⊕Z24⊕ (Z120)

2⊕ (Z840)
3

⊕Z2520⊕ (Z27720)
2⊕ (Z24227280)

2⊕ (Z411863760)
2

⊕Z2454438243748928651877425142836664498129840
⊕Z14726629462493571911264550857019986988779040
⊕Z4

,

H3(PSL2(O−6),PO−6(24)) = (Z2)
23⊕Z4⊕ (Z12)

2 .

Note that the action of SL2(O−d) on PO−d (k) induces an action of PSL2(O−d) provided k is even.
Example

gap> R:=ResolutionPSL2QuadraticIntegers(-6,4);

Resolution of length 4 in characteristic 0 for PSL(2,O-6) .

No contracting homotopy available.

gap> G:=R!.group;;

gap> M:=HomogeneousPolynomials(G,24);;

gap> C:=HomToIntegralModule(R,M);;

gap> Cohomology(C,1);

[ 2, 2, 2, 2, 12, 24, 9240, 55440, 0, 0, 0, 0 ]

gap> Cohomology(C,2);

[ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,

2, 6, 6, 6, 6, 6, 6, 6, 6, 12, 12, 12, 12, 12, 12, 12, 12, 12, 24, 120, 120,

840, 840, 840, 2520, 27720, 27720, 24227280, 24227280, 411863760, 411863760,

2454438243748928651877425142836664498129840,
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14726629462493571911264550857019986988779040, 0, 0, 0, 0 ]

gap> Cohomology(C,3);

[ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4, 12,

12 ]

We can also consider the coefficient module

PO−d (k, `) = PO−d (k)⊗O−d PO−d (`)

where the bar denotes a twist in the action obtained from complex conjugation. For an action of the
projective linear group we must insist that k+ ` is even. The following commands compute

H2(PSL2(O−11),PO−11(5,5)) = (Z2)
8⊕Z60⊕ (Z660)

3⊕Z6 ,

a computation which was first made, along with many other cohomology computationsfor Bianchi
groups, by Mehmet Haluk Sengun [Sen11].

Example
gap> R:=ResolutionPSL2QuadraticIntegers(-11,3);;

gap> M:=HomogeneousPolynomials(R!.group,5,5);;

gap> C:=HomToIntegralModule(R,M);;

gap> Cohomology(C,2);

[ 2, 2, 2, 2, 2, 2, 2, 2, 60, 660, 660, 660, 0, 0, 0, 0, 0, 0 ]

The function ResolutionPSL2QuadraticIntegers(-d,n) relies on a limited data base pro-
duced by the algorithms implemented by Schoennenbeck and Rahm. The function also covers some
cases covered by entering a sring "-d+I" as first variable. These cases correspond to projective spe-
cial groups of module automorphisms of lattices of rank 2 over the integers of the imaginary quadratic
number field Q(

√
−d) with non-trivial Steinitz-class. In the case of a larger class group there are cases

labelled "-d+I2",...,"-d+Ik" and the Ij together with O-d form a system of representatives of elements
of the class group modulo squares and Galois action. For instance, the following commands compute

H2(PSL(O−21+I2),Z) = Z2⊕Z6 .

Example
gap> R:=ResolutionPSL2QuadraticIntegers("-21+I2",3);

Resolution of length 3 in characteristic 0 for PSL(2,O-21+I2)) .

No contracting homotopy available.

gap> Homology(TensorWithIntegers(R),2);

[ 2, 0, 0, 0, 0, 0, 0 ]

10.10 Some other infinite matrix groups

Analogous to the functions for Bianchi groups, HAP has functions

• ResolutionSL2QuadraticIntegers(-d,n)

• ResolutionSL2ZInvertedInteger(m,n)
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• ResolutionGL2QuadraticIntegers(-d,n)

• ResolutionPGL2QuadraticIntegers(-d,n)

• ResolutionGL3QuadraticIntegers(-d,n)

• ResolutionPGL3QuadraticIntegers(-d,n)

for computing free resolutions for certain values of SL2(O−d), SL2(Z[ 1
m ]), GL2(O−d) and PGL2(O−d).

Additionally, the function

• ResolutionArithmeticGroup("string",n)

can be used to compute resolutions for groups whose data (provided by Sebas-
tian Schoennenbeck, Alexander Rahm and Mathieu Dutour) is stored in the directory
gap/pkg/Hap/lib/Perturbations/Gcomplexes .

For instance, the following commands compute

H1(SL2(O−6),PO−6(24)) = (Z2)
4⊕Z12⊕Z24⊕Z9240⊕Z55440⊕Z4 ,

H2(SL2(O−6),PO−6(24)) =

(Z2)
26⊕ (Z6)

7⊕ (Z12)
10⊕Z24⊕ (Z120)

2⊕ (Z840)
3

⊕Z2520⊕ (Z27720)
2⊕ (Z24227280)

2⊕ (Z411863760)
2

⊕Z2454438243748928651877425142836664498129840
⊕Z14726629462493571911264550857019986988779040
⊕Z4

,

H3(SL2(O−6),PO−6(24)) = (Z2)
58⊕ (Z4)

4⊕ (Z12) .

Example
gap> R:=ResolutionSL2QuadraticIntegers(-6,4);

Resolution of length 4 in characteristic 0 for PSL(2,O-6) .

No contracting homotopy available.

gap> G:=R!.group;;

gap> M:=HomogeneousPolynomials(G,24);;

gap> C:=HomToIntegralModule(R,M);;

gap> Cohomology(C,1);

[ 2, 2, 2, 2, 12, 24, 9240, 55440, 0, 0, 0, 0 ]

gap> Cohomology(C,2);

gap> Cohomology(C,2);

[ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,

2, 6, 6, 6, 6, 6, 6, 6, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 24, 120,

120, 840, 840, 840, 2520, 27720, 27720, 24227280, 24227280, 411863760,

411863760, 2454438243748928651877425142836664498129840,

14726629462493571911264550857019986988779040, 0, 0, 0, 0 ]

gap> Cohomology(C,3);

[ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,

2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,

2, 2, 2, 2, 2, 2, 2, 2, 4, 4, 4, 4, 12, 12 ]
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The following commands construct free resolutions up to degree 5 for the groups SL2(Z[1
2 ]),

GL2(O−2), GL2(O2), PGL2(O2), GL3(O−2), PGL3(O−2). The final command constructs a free reso-
lution up to degree 3 for PSL4(Z).

Example
gap> R1:=ResolutionSL2ZInvertedInteger(2,5);

Resolution of length 5 in characteristic 0 for SL(2,Z[1/2]) .

gap> R2:=ResolutionGL2QuadraticIntegers(-2,5);

Resolution of length 5 in characteristic 0 for GL(2,O-2) .

No contracting homotopy available.

gap> R3:=ResolutionGL2QuadraticIntegers(2,5);

Resolution of length 5 in characteristic 0 for GL(2,O2) .

No contracting homotopy available.

gap> R4:=ResolutionPGL2QuadraticIntegers(2,5);

Resolution of length 5 in characteristic 0 for PGL(2,O2) .

No contracting homotopy available.

gap> R5:=ResolutionGL3QuadraticIntegers(-2,5);

Resolution of length 5 in characteristic 0 for GL(3,O-2) .

No contracting homotopy available.

gap> R6:=ResolutionPGL3QuadraticIntegers(-2,5);

Resolution of length 5 in characteristic 0 for PGL(3,O-2) .

No contracting homotopy available.

gap> R7:=ResolutionArithmeticGroup("PSL(4,Z)",3);

Resolution of length 3 in characteristic 0 for <matrix group with 655 generators> .

No contracting homotopy available.

10.11 Ideals and finite quotient groups

The following commands first construct the number field Q(
√
−7), its ring of integers O−7 =

O(Q(
√
−7)), and the principal ideal I = 〈5+2

√
−7〉/O(Q(

√
−7)) of norm N (I) = 53. The ring I

is prime since its norm is a prime number. The primality of I is also demonstrated by observing that
the quotient ring R = O−7/I is an integral domain and hence isomorphic to the unique finite field of
order 53, R∼= Z/53Z . (In a ring of quadratic integers prime ideal is the same as maximal ideal).

The finite group G = SL2(O−7 / I) is then constructed and confirmed to be isomorphic to
SL2(Z/53Z). The group G is shown to admit a periodic ZG-resolution of Z of period dividing 52.

Finally the integral homology

Hn(G,Z) =
{

0 n 6= 3,7, for 0≤ n≤ 8,
Z2808 n = 3,7,

is computed.
Example

gap> Q:=QuadraticNumberField(-7);

Q(Sqrt(-7))
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gap> OQ:=RingOfIntegers(Q);

O(Q(Sqrt(-7)))

gap> I:=QuadraticIdeal(OQ,5+2*Sqrt(-7));

ideal of norm 53 in O(Q(Sqrt(-7)))

gap> R:=OQ mod I;

ring mod ideal of norm 53

gap> IsIntegralRing(R);

true

gap> gens:=GeneratorsOfGroup( SL2QuadraticIntegers(-7) );;

gap> G:=Group(gens*One(R));;G:=Image(IsomorphismPermGroup(G));;

gap> StructureDescription(G);

"SL(2,53)"

gap> IsPeriodic(G);

true

gap> CohomologicalPeriod(G);

52

gap> GroupHomology(G,1);

[ ]

gap> GroupHomology(G,2);

[ ]

gap> GroupHomology(G,3);

[ 8, 27, 13 ]

gap> GroupHomology(G,4);

[ ]

gap> GroupHomology(G,5);

[ ]

gap> GroupHomology(G,6);

[ ]

gap> GroupHomology(G,7);

[ 8, 27, 13 ]

gap> GroupHomology(G,8);

[ ]

The following commands show that the rational prime 7 is not prime in O−5 = O(Q(
√
−5)).

Moreover, 7 totally splits in O−5 since the final command shows that only the rational primes 2 and 5
ramify in O−5.

Example
gap> Q:=QuadraticNumberField(-5);;

gap> OQ:=RingOfIntegers(Q);;

gap> I:=QuadraticIdeal(OQ,7);;

gap> IsPrime(I);

false

gap> Factors(Discriminant(OQ));
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[ -2, 2, 5 ]

For d < 0 the rings Od = O(Q(
√

d)) are unique factorization domains for precisely

d =−1,−2,−3,−7,−11,−19,−43,−67,−163.

This result was conjectured by Gauss, and essentially proved by Kurt Heegner, and then later proved
by Harold Stark.

The following commands construct the classic example of a prime ideal I that is not principal.
They then illustrate reduction modulo I.

Example
gap> Q:=QuadraticNumberField(-5);;

gap> OQ:=RingOfIntegers(Q);;

gap> I:=QuadraticIdeal(OQ,[2,1+Sqrt(-5)]);

ideal of norm 2 in O(Q(Sqrt(-5)))

gap> 6 mod I;

0

10.12 Congruence subgroups for ideals

Given a ring of integers O and ideal I/O there is a canonical homomorphism πI:SL2(O)→ SL2(O/I).
A subgroup Γ ≤ SL2(O) is said to be a congruence subgroup if it contains kerπI . Thus congruence
subgroups are of finite index. Generalizing the definition in 10.1 above, we define the principal
congruence subgroup Γ1(I) = kerπI , and the congruence subgroup Γ0(I) consisting of preimages
of the upper triangular matrices in SL2(O/I).

The following commands construct Γ = Γ0(I) for the ideal I /OQ(
√
−5) generated by 12 and

36
√
−5. The group Γ has index 385 in SL2(OQ(

√
−5)). The final command displays a tree in a

Cayley graph for SL2(OQ(
√
−5)) whose nodes represent a transversal for Γ.

Example
gap> Q:=QuadraticNumberField(-5);;

gap> OQ:=RingOfIntegers(Q);;

gap> I:=QuadraticIdeal(OQ,[36*Sqrt(-5), 12]);;

gap> G:=HAP_CongruenceSubgroupGamma0(I);

CongruenceSubgroupGamma0(ideal of norm 144 in O(Q(Sqrt(-5))))

gap> IndexInSL2O(G);

385

gap> HAP_SL2TreeDisplay(G);

The next commands first construct the congruence subgroup Γ0(I) of index 144 in
SL2(OQ(

√
−2)) for the ideal I in OQ(

√
−2) generated by 4+ 5

√
−2. The commands then com-

pute
H1(Γ0(I),Z) = Z3⊕Z6⊕Z30⊕Z8 ,
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H2(Γ0(I),Z) = (Z2)
9⊕Z7 ,

H3(Γ0(I),Z) = (Z2)
9 .

Example
gap> Q:=QuadraticNumberField(-2);;

gap> OQ:=RingOfIntegers(Q);;

gap> I:=QuadraticIdeal(OQ,4+5*Sqrt(-2));;

gap> G:=HAP_CongruenceSubgroupGamma0(I);

CongruenceSubgroupGamma0(ideal of norm 66 in O(Q(Sqrt(-2))))

gap> IndexInSL2O(G);

144

gap> R:=ResolutionSL2QuadraticIntegers(-2,4,true);;

gap> S:=ResolutionFiniteSubgroup(R,G);;

gap> Homology(TensorWithIntegers(S),1);

[ 3, 6, 30, 0, 0, 0, 0, 0, 0, 0, 0 ]

gap> Homology(TensorWithIntegers(S),2);

[ 2, 2, 2, 2, 2, 2, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0 ]

gap> Homology(TensorWithIntegers(S),3);

[ 2, 2, 2, 2, 2, 2, 2, 2, 2 ]

10.13 First homology

The isomorphism H1(G,Z) ∼= Gab allows for the computation of first integral homology using com-
putational methods for finitely presented groups. Such methods underly the following computation
of

H1(Γ0(I),Z)∼= Z2⊕·· ·⊕Z4078793513671

where I is the prime ideal in the Gaussian integers generated by 41+56
√
−1.

Example
gap> Q:=QuadraticNumberField(-1);;

gap> OQ:=RingOfIntegers(Q);;

gap> I:=QuadraticIdeal(OQ,41+56*Sqrt(-1));

ideal of norm 4817 in O(GaussianRationals)

gap> G:=HAP_CongruenceSubgroupGamma0(I);;

gap> AbelianInvariants(G);

[ 2, 2, 4, 5, 7, 16, 29, 43, 157, 179, 1877, 7741, 22037, 292306033,

4078793513671 ]

We write Gab
tors to denote the maximal finite summand of the first homology group of G and refer

to this as the torsion subgroup. Nicholas Bergeron and Akshay Venkatesh [Ber16] have conjectured
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relationships between the torsion in congruence subgroups Γ and the volume of their quotient manifold
h3/Γ. For instance, for the Gaussian integers they conjecture

log |Γ0(I)ab
tors|

Norm(I)
→ λ

18π
, λ = L(2,χQ(

√
−1)) = 1− 1

9
+

1
25
− 1

49
+ · · ·

as the norm of the prime ideal I tends to ∞. The following approximates λ/18π = 0.0161957 and
log |Γ0(I)ab

tors|
Norm(I) = 0.00913432 for the above example.

Example
gap> Q:=QuadraticNumberField(-1);;

gap> Lfunction(Q,2)/(18*3.142);

0.0161957

gap> 1.0*Log(Product(AbelianInvariants(F)),10)/Norm(I);

0.00913432

The link with volume is given by the Humbert volume formula

Vol(h3/PSL2(Od)) =
|D|3/2

24
ζQ(
√

d)(2)/ζQ(2)

valid for square-free d < 0, where D is the discriminant of Q(
√

d). The volume of a finite index
subgroup Γis obtained by multiplying the right-hand side by the index |PSL2(Od) : Γ|.



Chapter 11

Parallel computation

11.1 An embarassingly parallel computation

The following example creates five child processes and uses them simultaneously to compute the
second integral homology of each of the 267 groups of order 64. The final command shows that

H2(G,Z) = Z15
2

for the 267-th group G in GAP’s library of small groups.
Example

gap> Processes:=List([1..5],i->ChildProcess());;

gap> fn:=function(i);return GroupHomology(SmallGroup(64,i),2);end;;

gap> for p in Processes do

> ChildPut(fn,"fn",p);

> od;

gap> NrSmallGroups(64);

267

gap> L:=ParallelList([1..267],"fn",Processes);;

gap> L[267];

[ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 ]

The function ParallelList() is built from HAP’s six core functions for parallel computation.
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