
ANUPQ

ANU p-Quotient

3.2.1

18 April 2019

Greg Gamble

Werner Nickel

Eamonn O’Brien

ANUPQ 2

Greg Gamble
Email: Greg.Gamble@uwa.edu.au
Homepage: http://school.maths.uwa.edu.au/~gregg
Address: Greg Gamble

Department of Mathematics and Statistics
Curtin University
GPO Box U 1987
Perth WA 6845
Australia

Werner Nickel

Homepage: http://www.mathematik.tu-darmstadt.de/~nickel/

Eamonn O’Brien
Email: obrien@math.auckland.ac.nz
Homepage: https://www.math.auckland.ac.nz/~obrien
Address: Department of Mathematics

University of Auckland
Private Bag 92019
Auckland
New Zealand

mailto://Greg.Gamble@uwa.edu.au
http://school.maths.uwa.edu.au/~gregg
http://www.mathematik.tu-darmstadt.de/~nickel/
mailto://obrien@math.auckland.ac.nz
https://www.math.auckland.ac.nz/~obrien

Contents

1 Introduction 4
1.1 Overview . 4
1.2 How to read this manual . 4
1.3 Authors and Acknowledgements . 5

2 Mathematical Background and Terminology 6
2.1 Basic notions . 6
2.2 The p-quotient Algorithm . 8
2.3 The p-group generation Algorithm, Standard Presentation, Isomorphism Testing . . . 9

3 Infrastructure 11
3.1 Loading the ANUPQ Package . 11
3.2 The ANUPQData Record . 12
3.3 Setting the Verbosity of ANUPQ via Info and InfoANUPQ 15
3.4 Utility Functions . 16
3.5 Attributes and a Property for fp and pc p-groups . 18
3.6 Hints and Warnings regarding the use of Options 19

4 Non-interactive ANUPQ functions 23
4.1 Computing p-Quotients . 23
4.2 Computing Standard Presentations . 28
4.3 Testing p-Groups for Isomorphism . 30
4.4 Computing Descendants of a p-Group . 31

5 Interactive ANUPQ functions 35
5.1 Starting and Stopping Interactive ANUPQ Processes 35
5.2 Interactive ANUPQ Process Utility Functions . 36
5.3 Interactive Versions of Non-interactive ANUPQ Functions 37
5.4 Low-level Interactive ANUPQ functions based on menu items of the pq program . . 46
5.5 General commands . 46
5.6 Commands from the Main p-Quotient menu . 48
5.7 Commands from the Advanced p-Quotient menu 50
5.8 Commands from the Standard Presentation menu 59
5.9 Commands from the Main p-Group Generation menu 61
5.10 Commands from the Advanced p-Group Generation menu 62
5.11 Primitive Interactive ANUPQ Process Read/Write Functions 64

2

ANUPQ 3

6 ANUPQ Options 66
6.1 Overview . 66
6.2 Detailed descriptions of ANUPQ Options . 67

7 Installing the ANUPQ Package 74
7.1 Testing your ANUPQ installation . 75
7.2 Running the pq program as a standalone . 76

A Examples 78
A.1 The Relators Option . 80
A.2 The Identities Option and PqEvaluateIdentities Function 82
A.3 A Large Example . 84
A.4 Developing descendants trees . 86

References 91

Index 92

Chapter 1

Introduction

1.1 Overview

The GAP 4 package ANUPQ provides an interface to the ANU pq C progam written by Eamonn
O’Brien, making the functionality of the C program available to GAP. Henceforth, we shall refer to
the ANUPQ package when referring to the GAP interface, and to the ANU pq program or just pq
when referring to that C program.

The pq program consists of implementations of the following algorithms:

1. A p-quotient algorithm to compute pc-presentations for p-factor groups of finitely presented
groups.

2. A p-group generation algorithm to generate pc presentations of groups of prime power order.

3. A standard presentation algorithm used to compute a canonical pc-presentation of a p-group.

4. An algorithm which can be used to compute the automorphism group of a p-group.

This part of the pq program is not accessible through the ANUPQ package. Instead, users
are advised to consider the GAP 4 package AutPGrp by Bettina Eick and Eamonn O’Brien,
which implements a better algorithm in GAP for the computation of automorphism groups of
p-groups.

The current version of the ANUPQ package requires GAP 4.5, and version 1.5 of the AutPGrp
package. All code that made the package compatible with earlier versions of GAP has been removed.
If you must use an older GAP version and cannot upgrade, then you may try using an older ANUPQ
version. However, you should not use versions of the ANUPQ package older than 2.2, since they are
known to have bugs.

1.2 How to read this manual

It is not expected that readers of this manual will read it in a linear fashion from cover to cover; some
sections contain material that is far too technical to be absorbed on a first reading.

Firstly, installers of the ANUPQ package will need to read Chapter ‘Installing the ANUPQ Pack-
age’, if they have not already gleaned these details from the README file.

4

ANUPQ 5

Once the ANUPQ package is installed, users of the ANUPQ package will benefit most by first
reading Chapter ‘Mathematical Background and Terminology’, which gives a brief description of the
background and terminology used (this chapter also cites a number of references for further reading),
and the introduction of Chapter ‘Infrastructure’ (skip the remainder of the chapter on a first reading).

Then the user/reader should pursue Chapter ‘Non-interactive ANUPQ functions’ in detail, delving
into Chapter ‘ANUPQ Options’ as necessary for the options of the functions that are described. The
user will become best acquainted with the ANUPQ package by trying the examples. This chapter
describes the non-interactive functions of the ANUPQ package, i.e. “one-shot” functions that invoke
the pq program in such a way that once GAP has got what it needs, the pq is allowed to exit. It is
expected that most of the time, users will only need these functions.

Advanced users will want to explore Chapter ‘Interactive ANUPQ functions’ which describes all
the interactive functions of the ANUPQ package; these are functions that extract information via a
dialogue with a running pq process. Occasionally, a user needs the “next step”; the functions provided
in this chapter make use of data from previous steps retained by the pq program, thus allowing the
user to interact with the pq program like one can when one uses the pq program as a stand-alone
(see guide.dvi in the standalone-doc directory).

After having read Chapters ‘Non-interactive ANUPQ functions’ and ‘Interactive ANUPQ func-
tions’, cross-references will have taken the reader into Chapter ‘ANUPQ Options’; by this stage, the
reader need only read the introduction of Chapter ‘ANUPQ Options’.

After the reader has developed some facility with the ANUPQ package, she should explore the
examples described in Appendix ‘Examples’.

If you run into trouble using the ANUPQ functions, some troubleshooting hints are given in Sec-
tion ‘Hints and Warnings regarding the use of Options’. If the troubleshooting hints don’t help, Sec-
tion ‘Authors and Acknowledgements’ below, gives contact details for the authors of the components
of the ANUPQ package.

1.3 Authors and Acknowledgements

The C implementation of the ANU pq standalone was developed by Eamonn O’Brien.
An interactive interface using iostreams was developed with the assistance of Werner Nickel by

Greg Gamble.
The GAP 4 version of this package was adapted from the GAP 3 version by Werner Nickel.
A new co-maintainer, Max Horn, joined the team in November, 2011.
The authors would like to thank Joachim Neubüser for his careful proof-reading and advice, and

for formulating Chapter ‘Mathematical Background and Terminology’.
We would also like to thank Bettina Eick who by her testing and provision of examples helped us

to eliminate a number of bugs and who provided a number of valuable suggestions for extensions of
the package beyond the GAP 3 capabilities.

If you find a bug, the last section of ANUPQ’s README describes the information we need and
where to send us a bug report; please take the time to read this (i.e. help us to help you).

Chapter 2

Mathematical Background and
Terminology

In this chapter we will give a brief description of the mathematical notions used in the algorithms
implemented in the ANU pq program that are made accessible from GAP through this package. For
proofs and details we will point to relevant places in the published literature. Also we will try to give
some explanation of terminology that may help to use the “low-level” interactive functions described in
Section ‘Low-level Interactive ANUPQ functions based on menu items of the pq program’. However,
users who intend to use these functions are strongly advised to acquire a thorough understanding of
the algorithms from the quoted literature. There is little or no checking done in these functions and
naive use may result in incorrect results.

2.1 Basic notions

2.1.1 pc Presentations and Consistency

For details, see e.g. [NNN98].
Every finite p-group G has a presentation of the form:

{a1, . . . ,an | ap
i = vii,1≤ i≤ n, [ak,a j] = v jk,1≤ j < k ≤ n}.

where v jk is a word in the elements ak+1, . . . ,an for 1≤ j ≤ k ≤ n.
This is called a power-commutator presentation (or pc presentation or pcp) of G, generators from

such a presentation will be referred to as pc generators. In terms of such pc generators every element
of G can be written in a “normal form” ae1

1 . . .aen
n with 0 ≤ ei < p. Moreover any given product

of the generators can be brought into such a normal form using the defining relations in the above
presentation as rewrite rules. Any such process is called collection. For the discussion of various
collection methods see [LGS90] and [VL90a].

Every p-group of order pn has such a pcp on n generators and conversely every such presentation
defines a p-group. However a p-group defined by a pcp on n generators can be of smaller order pm

with m < n. A pcp on n generators that does in fact define a p-group of order pn is called consistent
in this manual, in line with most of the literature on the algorithms occurring here. A consistent pcp
determines a confluent rewriting system (see IsConfluent (Reference: IsConfluent) of the GAP
Reference Manual) for the group it defines and for this reason often (in particular in the GAP Refer-
ence Manual) such a pcp presentation is also called confluent.

6

ANUPQ 7

Consistency of a pcp is tantamount to the fact that for any given word in the generators any two
collections will yield the same normal form.

Consistency of a pcp can be checked by a finite set of consistency conditions, demanding that
collection of the left hand side and of the right hand side of certain equations, starting with subproducts
indicated by bracketing, will result in the same normal form. There are 3 types of such equations (that
will be referred to in the manual):

(an)a = a(an) (Type1)
(bn)a = b(n−1)(ba),b(an) = (ba)a(n−1) (Type2)
c(ba) = (cb)a (Type3)

See [VL84] for a description of a sufficient set of consistency conditions in the context of the p-
quotient algorithm.

2.1.2 Exponent-p Central Series and Weighted pc Presentations

For details, see [NNN98].
The (descending or lower) (exponent-)p-central series of an arbitrary group G is defined by

P0(G) := G,Pi(G) := [G,Pi−1(G)]Pi−1(G)p.

For a p-group G this series terminates with the trivial group. G has p-class c if c is the smallest integer
such that Pc(G) is the trivial group. In this manual, as well as in much of the literature about the pq-
and related algorithms, the p-class is often referred to simply by class.

Let the p-group G have a consistent pcp as above. Then the subgroups

〈1〉< 〈an〉< 〈an,an−1〉< .. . < 〈an, . . . ,ai〉< .. . < G

form a central series of G. If this refines the p-central series, we can define the weight function w for
the pc generators by w(ai) = k, if ai is contained in Pk−1(G) but not in Pk(G).

The pair of such a weight function and a pcp allowing it, is called a weighted pcp.

2.1.3 p-Cover, p-Multiplicator

For details, see [NNN98].
Let d be the minimal number of generators of the p-group G of p-class c. Then G is isomorphic

to a factor group F/R of a free group F of rank d. We denote [F,R]Rp by R∗. It can be proved
(see e.g. [O’B90]) that the isomorphism type of G∗ := F/R∗ depends only on G. G∗ is called the p-
covering group or p-cover of G, and R/R∗ the p-multiplicator of G. The p-multiplicator is, of course,
an elementary abelian p-group; its minimal number of generators is called the (p-)multiplicator rank.

2.1.4 Descendants, Capable, Terminal, Nucleus

For details, see [New77] and [O’B90].
Let again G be a p-group of p-class c and d the minimal number of generators of G. A p-group H

is a descendant of G if the minimal number of generators of H is d and H/Pc(H) is isomorphic to G.
A descendant H of G is an immediate descendant if it has p-class c+1. G is called capable if it has
immediate descendants; otherwise it is terminal.

ANUPQ 8

Let G∗ = F/R∗ again be the p-cover of G. Then the group Pc(G∗) is called the nucleus of G. Note
that Pc(G∗) is contained in the p-multiplicator R/R∗.

It is proved (e.g. in [O’B90]) that the immediate descendants of G are obtained as factor groups of
the p-cover by (proper) supplements of the nucleus in the (elementary abelian) p-multiplicator. These
are also called allowable.

It is further proved there that every automorphism α of F/R extends to an automorphism α∗ of
the p-cover F/R∗ and that the restriction of α∗ to the multiplicator R/R∗ is uniquely determined by
α . Each extended automorphism α∗ induces a permutation of the allowable subgroups. Thus the ex-
tended automorphisms determine a group P of permutations on the set A of allowable subgroups (The
group P of permutations will appear in the description of some interactive functions). Choosing a rep-
resentative S from each orbit of P on A, the set of factor groups F/S contains each (isomorphism type
of) immediate descendant of G exactly once. For each immediate descendant, the procedure of com-
puting the p-cover, extending the automorphisms and computing the orbits on allowable subgroups
can be repeated. Iteration of this procedure can in principle be used to determine all descendants of a
p-group.

2.1.5 Laws

Let l(x1, . . . ,xn) be a word in the free generators x1, . . . ,xn of a free group of rank n. Then
l(x1, . . . ,xn) = 1 is called a law or identical relation in a group G if l(g1, . . . ,gn) = 1 for any choice of
elements g1, . . . ,gn in G. In particular, xe = 1 is called an exponent law, [[x,y], [u,v]] = 1 the metabelian
law, and [. . . [[x1,x2],x2], . . . ,x2] = 1 an Engel identity.

2.2 The p-quotient Algorithm

For details, see [HN80], [NO96] and [VL84]. Other descriptions of the algorithm are given in [Sim94].
The pq algorithm successively determines the factor groups of the groups of the p-central series

of a finitely presented (fp) group G. If a bound b for the p-class is given, the algorithm will determine
those factor groups up to at most p-class b. If the p-central series terminates with a subgroup Pk(G)
with k < b, the algorithm will stop with that group. If no such bound is given, it will try to find the
biggest such factor group.

G/P1(G) is the largest elementary abelian p-factor group of G and this can be found from the
relation matrix of G using matrix diagonalisation modulo p. So it suffices to explain how G/Pi+1(G)
is found from G and G/Pi(G) for some i≥ 1.

This is done, in principle, in two steps: first the p-cover of Gi := G/Pi(G) is determined (which
depends only on Gi, not on G) and then G/Pi+1(G) as a factor group of this p-cover.

2.2.1 Finding the p-cover

A very detailed description of the first step is given in [NNN98], from which we just extract some
passages in order to point to some terms occurring in this manual.

Let H be a p-group and pd(b) be the order of H/Pb(H). So d := d(1) is the minimal number of
generators of H. A weighted pcp of H will be called labelled if for each generator ak, k > d one
relation, having this generator as its right hand side, is marked as definition of this generator.

As described in [NNN98], a weighted labelled pcp of a p-group can be obtained stepping down
its p-central series.

ANUPQ 9

So let us assume that a weighted labelled pcp of Gi is given. A straightforward way of of writing
down a (not necessarily consistent) pcp for its p-cover is to add generators, one for each relation which
is not a definition, and modify the right hand side of each such relation by multiplying it on the right
by one of the new generators – a different generator for each such relation. Further relations are then
added to make the new generators central and of order p. This procedure is called adding tails. A
more formal description of it is again given in [NNN98].

It is important to realise that the “new” generators will generate an elementary abelian group,
that is, in additive notation, a vector space over the field of p elements. As said, the pcp of the p-
cover obtained in this way need not be consistent. Since the pcp of Gi was consistent, applying the
consistency conditions to the pcp of the p-cover, in case the presentation obtained for p-cover is not
consistent, will produce a set of equations between the new generators, that, written additively, are
linear equations over the field of p elements and can hence be used to remove redundant generators
until a consistent pcp is obtained.

In reality, to follow this straightforward procedure would be forbiddingly inefficient except for
very small examples. There are many ways of a priori reducing the number of “new generators” to be
introduced, using e.g. the weights attached to the generators, and the main part of [NNN98] is devoted
to a detailed discussion with proofs of these possibilities.

2.2.2 Imposing the Relations of the fp Group

In order to obtain G/Pi+1(G) from the pcp of the p-cover of Gi = G/Pi(G), the defining relations
from the original presentation of G must be imposed. Since Gi is a homomorphic image of G, these
relations again yield relations between the “new generators” in the presentation of the p-cover of Gi.

2.2.3 Imposing Laws

While we have so far only considered the computation of the factor groups of a given fp group by
the groups of its descending p-central series, the p-quotient algorithm allows a very important variant
of this idea: laws can be prescribed that should be fulfilled by the p-factor groups computed by the
algorithm. The key observation here is the fact that at each step down the descending p-central series
it suffices to impose these laws only for a finite number of words. Again for efficiency of the method
it is crucial to keep the number of such words small, and much of [NO96] and the literature quoted in
this paper is devoted to this problem.

In this form, starting with a free group and imposing an exponent law (also referred to as an
exponent check) the pq program has, in fact, found its most noted application in the determination of
(restricted) Burnside groups (as reported in e.g. [HN80], [NO96] and [VL90b]).

Via a GAP program using the “local” interactive functions of the pq program made available
through this interface also arbitrary laws can be imposed via the option Identities (see 6.2).

2.3 The p-group generation Algorithm, Standard Presentation, Isomor-
phism Testing

For details, see [New77] and [O’B90].
The p-group generation algorithm determines the immediate descendants of a given p-group G

up to isomorphism. From what has been explained in Section ‘Basic notions’, it is clear that this
amounts to the construction of the p-cover, the extension of the automorphisms of G to the p-cover

ANUPQ 10

and the determination of representatives of the orbits of the action of these automorphisms on the set
of supplements of the nucleus in the p-multiplicator.

The main practical problem here is the determination of these representatives. [O’B90] describes
methods for this and the pq program allows choices according to whether space or time limitations
must be met.

As well as the descendants of G, the pq program determines their automorphism groups from that
of G (see [O’B95]), which is important for an iteration of the process; this has been used by Eamonn
O’Brien, e.g. in the classification of the 2-groups that are now also part of the Small Groups library
available through GAP.

A variant of the p-group generation algorithm is also used to define a standard presentation of a
given p-group. This is done by constructing an isomorphic copy of the given group through a chain
of descendants and at each step making a choice of a particular representative for the respective orbit
of capable groups. In a fairly delicate process, subgroups of the p-multiplicator are represented by
echelonised matrices and a first among the labels for standard matrices is chosen (this is described in
detail in [O’B94]).

Finally, the standard presentation provides a way of testing if two given p-groups are isomor-
phic: the standard presentations of the groups are computed, for practical purposes compacted and
the results compared for being identical, i.e. the groups are isomorphic if and only if their standard
presentations are identical.

Chapter 3

Infrastructure

Most of the details in this chapter are of a technical nature; the user need only skim over this chapter
on a first reading. Mostly, it is enough to know that

• you must do a LoadPackage("anupq"); before you can expect to use a command defined by
the ANUPQ package (details are in Section ‘Loading the ANUPQ Package’);

• partial results of ANUPQ commands and some other data are stored in the ANUPQData global
variable (details are in Section ‘The ANUPQData Record’);

• doing SetInfoLevel(InfoANUPQ, n); for n greater than the default value 1 will give pro-
gressively more information of what is going on “behind the scenes” (details are in Section ‘Set-
ting the Verbosity of ANUPQ via Info and InfoANUPQ’);

• in Section ‘Utility Functions’ we describe some utility functions and functions that run examples
from the collection of examples of this package;

• in Section ‘Attributes and a Property for fp and pc p-groups’ we describe the attributes and
property NuclearRank, MultiplicatorRank and IsCapable; and

• in Section ‘Hints and Warnings regarding the use of Options’ we describe some troubleshoot-
ing strategies. Also this section explains the utility of setting ANUPQWarnOfOtherOptions :=
true; (particularly for novice users) for detecting misspelt options and diagnosing other option
usage problems.

3.1 Loading the ANUPQ Package

To use the ANUPQ package, as with any GAP package, it must be requested explicitly. This is done
by calling

Example
gap> LoadPackage("anupq");

Loading ANUPQ (ANU p-Quotient) 3.1
GAP code by Greg Gamble <Greg.Gamble@uwa.edu.au> (address for
correspondence)

Werner Nickel (http://www.mathematik.tu-darmstadt.de/~nickel/)
[uses ANU pq binary (C code program) version: 1.9]

11

ANUPQ 12

C code by Eamonn O’Brien (https://www.math.auckland.ac.nz/~obrien)
Co-maintained by Max Horn <max.horn@uni-siegen.de>

For help, type: ?ANUPQ

true

Note that since the ANUPQ package uses the AutomorphimGroupPGroup function of the AutPGrp
package and, in any case, often needs other AutPGrp functions when computing descendants, the user
must ensure that the AutPGrp package is also installed, at least version 1.5. If the AutPGrp package
is not installed, the ANUPQ package will fail to load.

Also, if GAP cannot find a working pq binary, the call to LoadPackage will return fail.
If you want to load the ANUPQ package by default, you can put the LoadPackage command

into your gap.ini file (see Section Reference: The gap.ini and gaprc files in the GAP Reference
Manual). By the way, the novice user of the ANUPQ package should probably also append the line

Example
ANUPQWarnOfOtherOptions := true;

to their gap.ini file, somewhere after the LoadPackage("anupq"); command
(see ANUPQWarnOfOtherOptions (3.6.1)).

3.2 The ANUPQData Record

This section contains fairly technical details which may be skipped on an initial reading.

3.2.1 ANUPQData

. ANUPQData (global variable)

is a GAP record in which the essential data for an ANUPQ session within GAP is stored; its fields
are:

binary
the path of the pq binary;

tmpdir
the path of the temporary directory used by the pq binary and GAP (i.e. the directory in which
all the pq’s temporary files are created) (also see ANUPQDirectoryTemporary (3.2.2) below);

outfile
the full path of the default pq output file;

SPimages
the full path of the file GAP_library to which the pq program writes its Standard Presentation
images;

version
the version of the current pq binary;

ANUPQ 13

ni a data record used by non-interactive functions (see below and Chapter ‘Non-interactive
ANUPQ functions’);

io list of data records for PqStart (see below and PqStart (5.1.1)) processes;

topqlogfile
name of file logged to by ToPQLog (see ToPQLog (3.4.7)); and

logstream
stream of file logged to by ToPQLog (see ToPQLog (3.4.7)).

Each time an interactive ANUPQ process is initiated via PqStart (see PqStart (5.1.1)), an identify-
ing number ioIndex is generated for the interactive process and a record ANUPQData.io[ioIndex]
with some or all of the fields listed below is created. Whenever a non-interactive function is called
(see Chapter ‘Non-interactive ANUPQ functions’), the record ANUPQData.ni is updated with fields
that, if bound, have exactly the same purpose as for a ANUPQData.io[ioIndex] record.

stream
the IOStream opened for interactive ANUPQ process ioIndex or non-interactive ANUPQ
function;

group
the group given as first argument to PqStart, Pq, PqEpimorphism, PqDescendants or
PqStandardPresentation (or any synonymous methods);

haspcp
is bound and set to true when a pc presentation is first set inside the pq program (e.g. by
PqPcPresentation or PqRestorePcPresentation or a higher order function like Pq,
PqEpimorphism, PqPCover, PqDescendants or PqStandardPresentation that does a
PqPcPresentation operation, but not PqStart which only starts up an interactive ANUPQ
process);

gens
a list of the generators of the group group as strings (the same as those passed to the pq pro-
gram);

rels
a list of the relators of the group group as strings (the same as those passed to the pq program);

name
the name of the group whose pc presentation is defined by a call to the pq program (according
to the pq program – unless you have used the GroupName option (see e.g. Pq (4.1.1)) or applied
the function SetName (see SetName (Reference: Name)) to the group, the “generic” name
"[grp]" is set as a default);

gpnum
if not a null string, the “number” (i.e. the unique label assigned by the pq program) of the last
descendant processed;

class
the largest lower exponent-p central class of a quotient group of the group (usually group)
found by a call to the pq program;

ANUPQ 14

forder
the factored order of the quotient group of largest lower exponent-p central class found for the
group (usually group) by a call to the pq program (this factored order is given as a list [p,n],
indicating an order of pn);

pcoverclass
the lower exponent-p central class of the p-covering group of a p-quotient of the group (usually
group) found by a call to the pq program;

workspace
the workspace set for the pq process (either given as a second argument to PqStart, or set by
default to 10000000);

menu
the current menu of the pq process (the pq program is managed by various menus, the details of
which the user shouldn’t normally need to know about – the menu field remembers which menu
the pq process is currently “in”);

outfname
is the file to which pq output is directed, which is always ANUPQData.outfile, except when
option SetupFile is used with a non-interactive function, in which case outfname is set to
"PQ_OUTPUT";

pQuotient
is set to the value returned by Pq (see Pq (4.1.1)) (the field pQepi is also set at the same time);

pQepi
is set to the value returned by PqEpimorphism (see PqEpimorphism (4.1.2)) (the field
pQuotient is also set at the same time);

pCover
is set to the value returned by PqPCover (see PqPCover (4.1.3));

SP is set to the value returned by PqStandardPresentation or StandardPresentation
(see PqStandardPresentation (5.3.4)) when called interactively, for process i (the field
SPepi is also set at the same time);

SPepi
is set to the value returned by EpimorphismPqStandardPresentation or
EpimorphismStandardPresentation (see EpimorphismPqStandardPresentation
(5.3.5)) when called interactively, for process i (the field SP is also set at the same time);

descendants
is set to the value returned by PqDescendants (see PqDescendants (4.4.1));

treepos
if set by a call to PqDescendantsTreeCoclassOne (see PqDescendantsTreeCoclassOne
(A.4.1)), it contains a record with fields class, node and ndes being the information that
determines the last descendant with a non-zero number of descendants processed;

ANUPQ 15

xgapsheet
if set by a call to PqDescendantsTreeCoclassOne (see PqDescendantsTreeCoclassOne
(A.4.1)) during an XGAP session, it contains the XGAP Sheet on which the descendants tree
is displayed; and

nextX
if set by a call to PqDescendantsTreeCoclassOne (see PqDescendantsTreeCoclassOne
(A.4.1)) during an XGAP session, it contains a list of integers, the i th entry of which is the
x -coordinate of the next node (representing a descendant) for the i th class.

3.2.2 ANUPQDirectoryTemporary

. ANUPQDirectoryTemporary(dir) (function)

calls the UNIX command mkdir to create dir , which must be a string, and if successful a directory
object for dir is both assigned to ANUPQData.tmpdir and returned. The field ANUPQData.outfile
is also set to be a file in ANUPQData.tmpdir, and on exit from GAP dir is removed. Most
users will never need this command; by default, GAP typically chooses a “random” subdirectory
of /tmp for ANUPQData.tmpdir which may occasionally have limits on what may be written there.
ANUPQDirectoryTemporary permits the user to choose a directory (object) where one is not so lim-
ited.

3.3 Setting the Verbosity of ANUPQ via Info and InfoANUPQ

3.3.1 InfoANUPQ

. InfoANUPQ (info class)

The input to and the output from the pq program is, by default, not displayed. However the user
may choose to see some, or all, of this input/output. This is done via the Info mechanism (see
Section Reference: Info Functions in the GAP Reference Manual). For this purpose, there is the
InfoClass InfoANUPQ. If the InfoLevel of InfoANUPQ is high enough each line of pq input/output
is directed to a call to Info and will be displayed for the user to see. By default, the InfoLevel of
InfoANUPQ is 1, and it is recommended that you leave it at this level, or higher. Messages that the user
should presumably want to see and output from the pq program influenced by the value of the option
OutputLevel (see the options listed in Section Pq (4.1.1)), other than timing and memory usage are
directed to Info at InfoANUPQ level 1.

To turn off all InfoANUPQ messaging, set the InfoANUPQ level to 0.
There are five other user-intended InfoANUPQ levels: 2, 3, 4, 5 and 6.

Example
gap> SetInfoLevel(InfoANUPQ, 2);

enables the display of most timing and memory usage data from the pq program, and also the number
of identity instances when the Identities option is used. (Some timing and memory usage data,
particularly when profuse in quantity, is Info-ed at InfoANUPQ level 3 instead.) Note that the the GAP
functions time and Runtime (see Runtime (Reference: Runtime) in the GAP Reference Manual)
count the time spent by GAP and not the time spent by the (external) pq program.

ANUPQ 16

Example
gap> SetInfoLevel(InfoANUPQ, 3);

enables the display of output of the nature of the first two InfoANUPQ that was not directly invoked by
the user (e.g. some commands require GAP to discover something about the current state known to the
pq program). The identity instances processed under the Identities option are also displayed at this
level. In some cases, the pq program produces a lot of output despite the fact that the OutputLevel
(see 6.2) is unset or is set to 0; such output is also Info-ed at InfoANUPQ level 3.

Example
gap> SetInfoLevel(InfoANUPQ, 4);

enables the display of all the commands directed to the pq program, behind a “ToPQ> ” prompt (so
that you can distinguish it from the output from the pq program). See Section ‘Hints and Warnings
regarding the use of Options’ for an example of how this can be a useful troubleshooting tool.

Example
gap> SetInfoLevel(InfoANUPQ, 5);

enables the display of the pq program’s prompts for input. Finally,
Example

gap> SetInfoLevel(InfoANUPQ, 6);

enables the display of all other output from the pq program, namely the banner and menus. However,
the timing data printed when the pq program exits can never be observed.

3.4 Utility Functions

3.4.1 PqLeftNormComm

. PqLeftNormComm(elts) (function)

returns for a list of elements of some group (e.g. elts may be a list of words in the generators
of a free or fp group) the left normed commutator of elts , e.g. if w1 , w2 , w3 are such elements then
PqLeftNormComm([w1, w2, w3]); is equivalent to Comm(Comm(w1, w2), w3);.

Note: elts must contain at least two elements.

3.4.2 PqGAPRelators

. PqGAPRelators(group, rels) (function)

returns a list of words that GAP understands, given a list rels of strings in the string representa-
tions of the generators of the fp group group prepared as a list of relators for the pq program.

Note: The pq program does not use / to indicate multiplication by an inverse and uses square
brackets to represent (left normed) commutators. Also, even though the pq program accepts relations,
all elements of rels must be in relator form, i.e. a relation of form w1 = w2 must be written as
w1*(w2)^-1.

Here is an example:

ANUPQ 17

Example
gap> F := FreeGroup("a", "b");
<free group on the generators [a, b]>
gap> PqGAPRelators(F, ["a*b^2", "[a,b]^2*a", "([a,b,a,b,b]*a*b)^2*a"]);
[a*b^2, a^-1*b^-1*a*b*a^-1*b^-1*a*b*a, b^-1*a^-1*b^-1*a^-1*b*a*b^-1*a*b*a^

-1*b*a^-1*b^-1*a*b*a*b^-1*a^-1*b^-1*a^-1*b*a*b^-1*a*b^-1*a^-1*b*a^-1*b^
-1*a*b*a*b*a^-1*b*a*b^-1*a*b*a^-1*b*a^-1*b^-1*a*b*a*b^-1*a^-1*b^-1*a^
-1*b*a*b^-1*a*b^-1*a^-1*b*a^-1*b^-1*a*b*a*b^2*a*b*a]

3.4.3 PqParseWord

. PqParseWord(word, n) (function)

parses a word , a string representing a word in the pc generators x1,...,xn , through GAP. This
function is provided as a rough-and-ready check of word for syntax errors. A syntax error will cause
the entering of a break-loop, in which the error message may or may not be meaningful (depending
on whether the syntax error gets caught at the GAP or kernel level).

Note: The reason the generators must be x1,...,xn is that these are the pc generator names
used by the pq program (as distinct from the generator names for the group provided by the user to a
function like Pq that invokes the pq program).

3.4.4 PqExample (no arguments)

. PqExample() (function)

. PqExample(example[, PqStart][, Display]) (function)

. PqExample(example[, PqStart][, filename]) (function)

With no arguments, or with single argument "index", or a string example that is not the name of
a file in the examples directory, an index of available examples is displayed.

With just the one argument example that is the name of a file in the examples directory, the
example contained in that file is executed in its simplest form. Some examples accept options which
you may use to modify some of the options used in the commands of the example. To find out which
options an example accepts, use one of the mechanisms for displaying the example described below.

Some examples have both non-interactive and interactive forms; those that are non-interactive only
have a name ending in -ni; those that are interactive only have a name ending in -i; examples with
names ending in .g also have only one form; all other examples have both non-interactive and inter-
active forms and for these giving PqStart as second argument invokes PqStart initially and makes
the appropriate adjustments so that the example is executed or displayed using interactive functions.

If PqExample is called with last (second or third) argument Display then the example is displayed
without being executed. If the last argument is a non-empty string filename then the example is also
displayed without being executed but is also written to a file with that name. Passing an empty string
as last argument has the same effect as passing Display.

Note: The variables used in PqExample are local to the running of PqExample, so there’s no
danger of having some of your variables over-written. However, they are not completely lost either.
They are saved to a record ANUPQData.examples.vars, i.e. if F is a variable used in the example
then you will be able to access it after PqExample has finished as ANUPQData.examples.vars.F.

ANUPQ 18

3.4.5 AllPqExamples

. AllPqExamples() (function)

returns a list of all currently available examples in default UNIX-listing (i.e. alphabetic) order.

3.4.6 GrepPqExamples

. GrepPqExamples(string) (function)

runs the UNIX command grep string over the ANUPQ examples and returns the list of exam-
ples for which there is a match. The actual matches are Info-ed at InfoANUPQ level 2.

3.4.7 ToPQLog

. ToPQLog([filename]) (function)

With string argument filename , ToPQLog opens the file with name filename for logging; all
commands written to the pq binary (that are Info-ed behind a “ToPQ> ” prompt at InfoANUPQ level
4) are then also written to that file (but without prompts). With no argument, ToPQLog stops logging
to whatever file was being logged to. If a file was already being logged to, that file is closed and the
file with name filename is opened for logging.

3.5 Attributes and a Property for fp and pc p-groups

3.5.1 NuclearRank

. NuclearRank(G) (attribute)

. MultiplicatorRank(G) (attribute)

. IsCapable(G) (property)

return the nuclear rank of G , p-multiplicator rank of G , and whether G is capable (i.e. true if it is,
or false if it is not), respectively.

These attributes and property are set automatically if G is one of the following:

• an fp group returned by PqStandardPresentation or StandardPresentation
(see PqStandardPresentation (4.2.1));

• the image (fp group) of the epimorphism returned by an
EpimorphismPqStandardPresentation or EpimorphismStandardPresentation call
(see EpimorphismPqStandardPresentation (4.2.2)); or

• one of the pc groups of the list of descendants returned by PqDescendants
(see PqDescendants (4.4.1)).

If G is an fp group or a pc p-group and not one of the above and the attribute or property has not
otherwise been set for G , then PqStandardPresentation is called to set all three of NuclearRank,
MultiplicatorRank and IsCapable, before returning the value of the attribute or property actually
called. Such a group G must know in advance that it is a p-group; this is the case for the groups

ANUPQ 19

returned by the functions Pq and PqPCover, and the image group of the epimorphism returned by
PqEpimorphism. Otherwise, if you know the group to be a p-group, then this can be set by typing

SetIsPGroup(G, true);

or by invoking IsPGroup(G). Note that for an fp group G , the latter may result in a coset enumer-
ation which might not terminate in a reasonable time.

Note: For G such that HasNuclearRank(G) = true, IsCapable(G) is equivalent to (the truth
or falsity of) NuclearRank(G) = 0.

3.6 Hints and Warnings regarding the use of Options

On a first reading we recommend you skip this section and come back to it if and when you run into
trouble.

Note: By “options” we refer to GAP options. The pq program also uses the term “option”; to
distinguish the two usages of “option”, in this manual we use the term menu item to refer to what the
pq program refers to as an “option”.

Options are passed to the ANUPQ interface functions in either of the two usual mechanisms
provided by GAP, namely:

• options may be set globally using the function PushOptions (see Chapter Reference: Options
Stack in the GAP Reference Manual); or

• options may be appended to the argument list of any function call, separated by a colon from
the argument list (see Chapter Reference: Function Calls in the GAP Reference Manual), in
which case they are then passed on recursively to any subsequent inner function call, which may
in turn have options of their own.

Particularly, when one is using the interactive functions of Chapter ‘Interactive ANUPQ functions’,
one should, in general, avoid using the global method of passing options. In fact, it is recommended
that prior to calling PqStart the OptionsStack be empty. The essential problem with setting options
globally using the function PushOptions is that options pushed onto OptionsStack, in this way,
(generally) remain there until an explicit PopOptions() call is made.

In contrast, options passed in the usual way behind a colon following a function’s arguments (see
Reference: Function Call With Options in the GAP Reference Manual) are local, and disappear
from OptionsStack after the function has executed successfully. If the function does not execute
successfully, i.e. it runs into error and the user quits the resulting break loop (see Section Refer-
ence: Break Loops in the Reference Manual) rather than attempting to repair the problem and typing
return; then, unless the error at the kernel level, the OptionsStack is reset. If an error is detected
inside the kernel (hopefully, this should occur only rarely, if at all) then the options of that function
will not be cleared from OptionsStack; in such cases:

Example
gap> ResetOptionsStack();
#I Options stack is already empty

is usually necessary (see Chapter ResetOptionsStack (Reference: ResetOptionsStack) in the GAP
Reference Manual), which recursively calls PopOptions() until OptionsStack is empty, or as in the
above case warns you that the OptionsStack is already empty.

ANUPQ 20

Note that a function, that is passed options after the colon, will also see any global options or any
options passed down recursively from functions calling that function, unless those options are over-
ridden by options passed via the function. Also, note that duplication of option names for different
programs may lead to misinterpretations, and mis-spelled options will not be “seen”.

The non-interactive functions of Chapter ‘Non-interactive ANUPQ functions’ that have Pq some-
where in their name provide an alternative method of passing options as additional arguments. This
has the advantages that options can be abbreviated and mis-spelled options will be trapped.

3.6.1 ANUPQWarnOfOtherOptions

. ANUPQWarnOfOtherOptions (global variable)

is a global variable that is by default false. If it is set to true then any function provided by the
ANUPQ function that recognises at least one option, will warn you of “other” options, i.e. options
that the function does not recognise. These warnings are emitted at InfoWarning or InfoANUPQ level
1. This is useful for detecting mis-spelled options. Here is an example using the function Pq (first
described in Chapter ‘Non-interactive ANUPQ functions’):

Example
gap> SetInfoLevel(InfoANUPQ, 1); # Set InfoANUPQ to default level
gap> ANUPQWarnOfOtherOptions := true;;
gap> # The following makes entry into break loops very ‘‘quiet’’ ...
gap> OnBreak := function() Where(0); end;;
gap> F := FreeGroup("a", "b");
<free group on the generators [a, b]>
gap> Pq(F : Prime := 2, Classbound := 1);
#I ANUPQ Warning: Options: ["Classbound"] ignored
#I (invalid for generic function: ‘Pq’).
user interrupt at
moreOfline := ReadLine(iostream);
Entering break read-eval-print loop ...
you can ’quit;’ to quit to outer loop, or
you can ’return;’ to continue

Here we mistyped ClassBound as Classbound, and after seeing the Info-ed warning that
Classbound was ignored, we typed a control -C (that’s the “user interrupt at” message) which
took us into a break loop. Since the Pq command was not able to finish, the options Prime and
Classbound, in particular, will still be on the OptionsStack:

Example
brk> OptionsStack;
[rec(Prime := 2, Classbound := 1),

rec(Prime := 2, Classbound := 1, PqEpiOrPCover := "pQuotient")]

The option PqEpiOrPCover is a behind-the-scenes option that need not concern the user. On quitting
the break-loop the OptionsStack is reset and a warning telling you this is emitted:

Example
brk> quit; # to get back to the ‘gap>’ prompt
#I Options stack has been reset

Above, we altered OnBreak (see OnBreak (Reference: OnBreak) in the Reference manual) to reduce
the back-tracing on entry into a break loop. We now restore OnBreak to its usual value.

ANUPQ 21

Example
gap> OnBreak := Where;;

Notes
In cases where functions recursively call others with options (e.g. when using PqExample with

options), setting ANUPQWarnOfOtherOptions := true may give rise to spurious “other” option de-
tections.

It is recommended that the novice user set ANUPQWarnOfOtherOptions to true in their gap.ini
file (see Section ‘Loading the ANUPQ Package’).

Other Troubleshooting Strategies
There are some other strategies which may have helped us to see our error above. The function

Pq recognises the option OutputLevel (see 6.2); if this option is set to at least 1, the pq program
provides information on each class quotient as it is generated:

Example
gap> ANUPQWarnOfOtherOptions := false;; # Set back to normal
gap> F := FreeGroup("a", "b");;
gap> Pq(F : Prime := 2, Classbound := 1, OutputLevel := 1);
#I Lower exponent-2 central series for [grp]
#I Group: [grp] to lower exponent-2 central class 1 has order 2^2
#I Group: [grp] to lower exponent-2 central class 2 has order 2^5
#I Group: [grp] to lower exponent-2 central class 3 has order 2^10
#I Group: [grp] to lower exponent-2 central class 4 has order 2^18
#I Group: [grp] to lower exponent-2 central class 5 has order 2^32
#I Group: [grp] to lower exponent-2 central class 6 has order 2^55
#I Group: [grp] to lower exponent-2 central class 7 has order 2^96
#I Group: [grp] to lower exponent-2 central class 8 has order 2^167
#I Group: [grp] to lower exponent-2 central class 9 has order 2^294
#I Group: [grp] to lower exponent-2 central class 10 has order 2^520
#I Group: [grp] to lower exponent-2 central class 11 has order 2^932
#I Group: [grp] to lower exponent-2 central class 12 has order 2^1679
[... output truncated ...]

After seeing the information for the class 2 quotient we may have got the idea that the Classbound
option was not recognised and may have realised that this was due to a mis-spelling. The above
will ordinarily cause the available space to be exhausted, necessitating user-intervention by typing
control -C and quit; (to escape the break loop); otherwise Pq terminates when the class reaches 63
(the default value of ClassBound).

If you have some familiarity with “keyword” command input to the pq binary, then setting the
level of InfoANUPQ to 4 would also have indicated a problem:

Example
gap> ResetOptionsStack(); # Necessary, if a break-loop was entered above
gap> SetInfoLevel(InfoANUPQ, 4);
gap> Pq(F : Prime := 2, Classbound := 1);
#I ToPQ> 7 #to (Main) p-Quotient Menu
#I ToPQ> 1 #define group
#I ToPQ> name [grp]
#I ToPQ> prime 2
#I ToPQ> class 63
#I ToPQ> exponent 0
#I ToPQ> output 0

ANUPQ 22

#I ToPQ> generators { a,b }
#I ToPQ> relators { };
[... output truncated ...]

Here the line “#I ToPQ> class 63” indicates that a directive to set the classbound to 63 was sent to
the pq program.

Chapter 4

Non-interactive ANUPQ functions

Here we describe all the non-interactive functions of the ANUPQ package; i.e. “one-shot” functions
that invoke the pq program in such a way that once GAP has got what it needs, the pq program is
allowed to exit. It is expected that most of the time users will only need these functions. The functions
interface with three of the four algorithms (see Chapter ‘Introduction’) provided by the ANU pq C
program, and are mainly grouped according to the algorithm of the pq program they relate to.

In Section ‘Computing p-Quotients’, we describe the functions that give access to the p-quotient
algorithm.

Section ‘Computing Standard Presentations’ describe functions that give access to the standard
presentation algorithm.

Section ‘Testing p-Groups for Isomorphism’ describe functions that implement an isomorphism
test for p-groups using the standard presentation algorithm.

In Section ‘Computing Descendants of a p-Group’, we describe functions that give access to the
p-group generation algorithm.

To use any of the functions one must have at some stage previously typed:
Example

gap> LoadPackage("anupq");

(the response of which we have omitted; see ‘Loading the ANUPQ Package’).
It is strongly recommended that the user try the examples provided. To save typing there is a

PqExample equivalent for each manual example. We also suggest that to start with you may find the
examples more instructive if you set the InfoANUPQ level to 2 (see InfoANUPQ (3.3.1)).

4.1 Computing p-Quotients

4.1.1 Pq

. Pq(F: options) (function)

returns for the fp or pc group F , the p-quotient of F specified by options , as a pc group. Fol-
lowing the colon, options is a selection of the options from the following list, separated by commas
like record components (see Section Reference: Function Call With Options in the GAP Reference
Manual). As a minimum the user must supply a value for the Prime option. Below we list the options
recognised by Pq (see Chapter ‘ANUPQ Options’ for detailed descriptions).

23

ANUPQ 24

• Prime := p

• ClassBound := n

• Exponent := n

• Relators := rels

• Metabelian

• Identities := funcs

• GroupName := name

• OutputLevel := n

• SetupFile := filename

• PqWorkspace := workspace

Notes: Pq may also be called with no arguments or one integer argument, in which case it is being used
interactively (see Pq (5.3.1)); the same options may be used, except that SetupFile and PqWorkspace
are ignored by the interactive Pq function.

See Section ‘Attributes and a Property for fp and pc p-groups’ for the attributes and property
NuclearRank, MultiplicatorRank and IsCapable which may be applied to the group returned by
Pq.

See also PqEpimorphism (PqEpimorphism (4.1.2)).
We now give a few examples of the use of Pq. Except for the addition of a few comments and the

non-suppression of output (by not using duplicated semicolons) the next 3 examples may be run by
typing: PqExample("Pq"); (see PqExample (3.4.4)).

Example
gap> LoadPackage("anupq");; # does nothing if ANUPQ is already loaded
gap> # First we get a p-quotient of a free group of rank 2
gap> F := FreeGroup("a", "b");; a := F.1;; b := F.2;;
gap> Pq(F : Prime := 2, ClassBound := 3);
<pc group of size 1024 with 10 generators>
gap> # Now let us get a p-quotient of an fp group
gap> G := F / [a^4, b^4];
<fp group on the generators [a, b]>
gap> Pq(G : Prime := 2, ClassBound := 3);
<pc group of size 256 with 8 generators>
gap> # Now let’s get a different p-quotient of the same group
gap> Pq(G : Prime := 2, ClassBound := 3, Exponent := 4);
<pc group of size 128 with 7 generators>
gap> # Now we’ll get a p-quotient of another fp group
gap> # which we will redo using the ‘Relators’ option
gap> R := [a^25, Comm(Comm(b, a), a), b^5];
[a^25, a^-1*b^-1*a*b*a^-1*b^-1*a^-1*b*a^2, b^5]
gap> H := F / R;
<fp group on the generators [a, b]>
gap> Pq(H : Prime := 5, ClassBound := 5, Metabelian);
<pc group of size 78125 with 7 generators>

ANUPQ 25

Now we redo the last example to show how one may use the Relators option. Observe that
Comm(Comm(b, a), a) is a left normed commutator which must be written in square bracket no-
tation for the pq program and embedded in a pair of double quotes. The function PqGAPRelators
(see PqGAPRelators (3.4.2)) can be used to translate a list of strings prepared for the Relators
option into GAP format. Below we use it. Observe that the value of R is the same as before.

Example
gap> F := FreeGroup("a", "b");;
gap> # ‘F’ was defined for ‘Relators’. We use the same strings that GAP uses
gap> # for printing the free group generators. It is *not* necessary to
gap> # predefine: a := F.1; etc. (as it was above).
gap> rels := ["a^25", "[b, a, a]", "b^5"];
["a^25", "[b, a, a]", "b^5"]
gap> R := PqGAPRelators(F, rels);
[a^25, a^-1*b^-1*a*b*a^-1*b^-1*a^-1*b*a^2, b^5]
gap> H := F / R;
<fp group on the generators [a, b]>
gap> Pq(H : Prime := 5, ClassBound := 5, Metabelian,
> Relators := rels);
<pc group of size 78125 with 7 generators>

In fact, above we could have just passed F (rather than H), i.e. we could have done:
Example

gap> F := FreeGroup("a", "b");;
gap> rels := ["a^25", "[b, a, a]", "b^5"];
["a^25", "[b, a, a]", "b^5"]
gap> Pq(F : Prime := 5, ClassBound := 5, Metabelian,
> Relators := rels);
<pc group of size 78125 with 7 generators>

The non-interactive Pq function also allows the options to be passed in two other ways; these alter-
natives have been included for those familiar with the GAP 3 version of the ANUPQ package; the
preferred method of passing options is the one already described. Firstly, they may be passed in a
record as a second argument; note that any boolean options must be set explicitly e.g.

Example
gap> Pq(H, rec(Prime := 5, ClassBound := 5, Metabelian := true));
<pc group of size 78125 with 7 generators>

It is also possible to pass them as extra arguments, where each option name appears as a string followed
immediately by its value (if not a boolean option) e.g.

Example
gap> Pq(H, "Prime", 5, "ClassBound", 5, "Metabelian");
<pc group of size 78125 with 7 generators>

The preceding two examples can be run from GAP via PqExample("Pq-ni"); (see PqExample
(3.4.4)).

This method of passing options permits abbreviation; the only restriction is that the abbreviation
must be unique. So "Pr" may be used for "Prime", "Class" or even just "C" for "ClassBound",
etc.

The following example illustrates the use of the option Identities. We compute the largest
finite Burnside group of exponent 5 that also satisfies the 3-Engel identity. Each identity is defined by

ANUPQ 26

a function whose arguments correspond to the variables of the identity. The return value of each of
those functions is the identity evaluated on the arguments of the function.

Example
gap> F := FreeGroup(2);
<free group on the generators [f1, f2]>
gap> Burnside5 := x->x^5;
function(x) ... end
gap> Engel3 := function(x,y) return PqLeftNormComm([x,y,y,y]); end;
function(x, y) ... end
gap> Pq(F : Prime := 5, Identities := [Burnside5, Engel3]);
#I Class 1 with 2 generators.
#I Class 2 with 3 generators.
#I Class 3 with 5 generators.
#I Class 3 with 5 generators.
<pc group of size 3125 with 5 generators>

The above example can be run from GAP via PqExample("B5-5-Engel3-Id"); (see PqExample
(3.4.4)).

4.1.2 PqEpimorphism

. PqEpimorphism(F: options) (function)

returns for the fp or pc group F an epimorphism from F onto the p-quotient of F specified by
options ; the possible options options and required option ("Prime") are as for Pq (see Pq (4.1.1)).
PqEpimorphism only differs from Pq in what it outputs; everything about what must/may be passed
as input to PqEpimorphism is the same as for Pq. The same alternative methods of passing options to
the non-interactive Pq function are available to the non-interactive version of PqEpimorphism.

Notes: PqEpimorphism may also be called with no arguments or one integer argument, in which
case it is being used interactively (see PqEpimorphism (5.3.2)), and the options SetupFile and
PqWorkspace are ignored by the interactive PqEpimorphism function.

See Section ‘Attributes and a Property for fp and pc p-groups’ for the attributes and property
NuclearRank, MultiplicatorRank and IsCapable which may be applied to the image group of
the epimorphism returned by PqEpimorphism.

Example
gap> F := FreeGroup (2, "F");
<free group on the generators [F1, F2]>
gap> phi := PqEpimorphism(F : Prime := 5, ClassBound := 2);
[F1, F2] -> [f1, f2]
gap> Image(phi);
<pc group of size 3125 with 5 generators>

Typing: PqExample("PqEpimorphism"); runs the above example in GAP (see PqExample
(3.4.4)).

4.1.3 PqPCover

. PqPCover(F: options) (function)

ANUPQ 27

returns for the fp or pc group F , the p-covering group of the p-quotient of F specified by options ,
as a pc group, i.e. the p-covering group of the p-quotient Pq(F : options). Thus the options
that PqPCover accepts are exactly those expected for Pq (and hence as a minimum the user must
supply a value for the Prime option; see Pq (4.1.1) for more details), except in the following special
case.

If F is already a p-group, in the sense that IsPGroup(F) is true, then

Prime
defaults to PrimePGroup(F), if not supplied and HasPrimePGroup(F) = true; and

ClassBound
defaults to PClassPGroup(F) if HasPClassPGroup(F) = true if not supplied, or to the usual
default of 63, otherwise.

The same alternative methods of passing options to the non-interactive Pq function are available to the
non-interactive version of PqPCover.

We now give a few examples of the use of PqPCover. These examples are just a subset of the
ones we gave for Pq (see Pq (4.1.1)), except that in each instance the command Pq has been replaced
with PqPCover. Essentially the same examples may be run by typing: PqExample("PqPCover");
(see PqExample (3.4.4)).

Example
gap> F := FreeGroup("a", "b");; a := F.1;; b := F.2;;
gap> PqPCover(F : Prime := 2, ClassBound := 3);
<pc group of size 262144 with 18 generators>
gap>
gap> # Now let’s get a p-cover of a p-quotient of an fp group
gap> G := F / [a^4, b^4];
<fp group on the generators [a, b]>
gap> PqPCover(G : Prime := 2, ClassBound := 3);
<pc group of size 16384 with 14 generators>
gap>
gap> # Now let’s get a p-cover of a different p-quotient of the same group
gap> PqPCover(G : Prime := 2, ClassBound := 3, Exponent := 4);
<pc group of size 8192 with 13 generators>
gap>
gap> # Now we’ll get a p-cover of a p-quotient of another fp group
gap> # which we will redo using the ‘Relators’ option
gap> R := [a^25, Comm(Comm(b, a), a), b^5];
[a^25, a^-1*b^-1*a*b*a^-1*b^-1*a^-1*b*a^2, b^5]
gap> H := F / R;
<fp group on the generators [a, b]>
gap> PqPCover(H : Prime := 5, ClassBound := 5, Metabelian);
<pc group of size 48828125 with 11 generators>
gap>
gap> # Now we redo the previous example using the ‘Relators’ option
gap> F := FreeGroup("a", "b");;
gap> rels := ["a^25", "[b, a, a]", "b^5"];
["a^25", "[b, a, a]", "b^5"]
gap> PqPCover(F : Prime := 5, ClassBound := 5, Metabelian,
> Relators := rels);
<pc group of size 48828125 with 11 generators>

ANUPQ 28

4.2 Computing Standard Presentations

4.2.1 PqStandardPresentation

. PqStandardPresentation(F: options) (function)

. StandardPresentation(F: options) (method)

return the p -quotient specified by options of the fp or pc p-group F , as an fp group which
has a standard presentation. Here options is a selection of the options from the following list (see
Chapter ‘ANUPQ Options’ for detailed descriptions). Section ‘Hints and Warnings regarding the use
of Options’ gives some important hints and warnings regarding option usage, and Section Reference:
Function Call With Options in the GAP Reference Manual describes their “record”-like syntax.

• Prime := p

• pQuotient := Q

• ClassBound := n

• Exponent := n

• Metabelian

• GroupName := name

• OutputLevel := n

• StandardPresentationFile := filename

• SetupFile := filename

• PqWorkspace := workspace

Unless F is a pc p -group, the user must supply either the option Prime or the option pQuotient
(if both Prime and pQuotient are supplied, the prime p is determined by applying PrimePGroup
(see PrimePGroup (Reference: PrimePGroup) in the Reference Manual) to the value of
pQuotient).

The options for PqStandardPresentation may also be passed in the two other alternative ways
described for Pq (see Pq (4.1.1)). StandardPresentation does not provide these alternative ways
of passing options.

Notes: In contrast to the function Pq (see Pq (4.1.1)) which returns a pc group,
PqStandardPresentation or StandardPresentation returns an fp group. This is because the
output is mainly used for isomorphism testing for which an fp group is enough. However, the pre-
sentation is a polycyclic presentation and if you need to do any further computation with this group
(e.g. to find the order) you can use the function PcGroupFpGroup (see PcGroupFpGroup (Reference:
PcGroupFpGroup) in the GAP Reference Manual) to form a pc group.

If the user does not supply a p -quotient Q via the pQuotient option and the prime p is either
supplied or F is a pc p -group, then a p -quotient Q is computed. If the user does supply a p -quotient
Q via the pQuotient option, the package AutPGrp is called to compute the automorphism group of
Q ; an error will occur that asks the user to install the package AutPGrp if the automorphism group
cannot be computed.

ANUPQ 29

The attributes and property NuclearRank, MultiplicatorRank and IsCapable are set for the
group returned by PqStandardPresentation or StandardPresentation (see Section ‘Attributes
and a Property for fp and pc p-groups’).

We illustrate the method with the following examples.
Example

gap> F := FreeGroup("a", "b");; a := F.1;; b := F.2;;
gap> G := F / [a^25, Comm(Comm(b, a), a), b^5];
<fp group on the generators [a, b]>
gap> S := StandardPresentation(G : Prime := 5, ClassBound := 10);
<fp group on the generators [f1, f2, f3, f4, f5, f6, f7, f8, f9, f10, f11,

f12, f13, f14, f15, f16, f17, f18, f19, f20, f21, f22, f23, f24, f25, f26]>
gap> IsPcGroup(S);
false
gap> # if we need to compute with S we should convert it to a pc group
gap> Spc := PcGroupFpGroup(S);
<pc group of size 1490116119384765625 with 26 generators>
gap>
gap> H := F / [a^625, Comm(Comm(Comm(Comm(b, a), a), a), a)/Comm(b, a)^5,
> Comm(Comm(b, a), b), b^625];;
gap> StandardPresentation(H : Prime := 5, ClassBound := 15, Metabelian);
<fp group on the generators [f1, f2, f3, f4, f5, f6, f7, f8, f9, f10, f11,

f12, f13, f14, f15, f16, f17, f18, f19, f20]>
gap>
gap> F4 := FreeGroup("a", "b", "c", "d");;
gap> a := F4.1;; b := F4.2;; c := F4.3;; d := F4.4;;
gap> G4 := F4 / [b^4, b^2 / Comm(Comm (b, a), a), d^16,
> a^16 / (c * d), b^8 / (d * c^4)];
<fp group on the generators [a, b, c, d]>
gap> K := Pq(G4 : Prime := 2, ClassBound := 1);
<pc group of size 4 with 2 generators>
gap> StandardPresentation(G4 : pQuotient := K, ClassBound := 14);
<fp group with 53 generators>

Typing: PqExample("StandardPresentation"); runs the above example in GAP
(see PqExample (3.4.4)).

4.2.2 EpimorphismPqStandardPresentation

. EpimorphismPqStandardPresentation(F: options) (function)

. EpimorphismStandardPresentation(F: options) (method)

Each of the above functions accepts the same arguments and options as the function
StandardPresentation (see StandardPresentation (4.2.1)) and returns an epimorphism from
the fp or pc group F onto the finitely presented group given by a standard presentation, i.e. if S
is the standard presentation computed for the p-quotient of F by StandardPresentation then
EpimorphismStandardPresentation returns the epimorphism from F to the group with presen-
tation S .

Note: The attributes and property NuclearRank, MultiplicatorRank and IsCapable are set
for the image group of the epimorphism returned by EpimorphismPqStandardPresentation or
EpimorphismStandardPresentation (see Section ‘Attributes and a Property for fp and pc p-
groups’).

ANUPQ 30

We illustrate the function with the following example.
Example

gap> F := FreeGroup(6, "F");
<free group on the generators [F1, F2, F3, F4, F5, F6]>
gap> # For printing GAP uses the symbols F1, ... for the generators of F
gap> x := F.1;; y := F.2;; z := F.3;; w := F.4;; a := F.5;; b := F.6;;
gap> R := [x^3 / w, y^3 / w * a^2 * b^2, w^3 / b,
> Comm (y, x) / z, Comm (z, x), Comm (z, y) / a, z^3];;
gap> Q := F / R;
<fp group on the generators [F1, F2, F3, F4, F5, F6]>
gap> # For printing GAP also uses the symbols F1, ... for the generators of Q
gap> # (the same as used for F) ... but the gen’rs of Q and F are different:
gap> GeneratorsOfGroup(F) = GeneratorsOfGroup(Q);
false
gap> G := Pq(Q : Prime := 3, ClassBound := 3);
<pc group of size 729 with 6 generators>
gap> phi := EpimorphismStandardPresentation(Q : Prime := 3,
> ClassBound := 3);
[F1, F2, F3, F4, F5, F6] -> [f1*f2^2*f3*f4^2*f5^2, f1*f2*f3*f5, f3^2,

f4*f6^2, f5, f6]
gap> Source(phi); # This is the group Q (GAP uses F1, ... for gen’r symbols)
<fp group of size infinity on the generators [F1, F2, F3, F4, F5, F6]>
gap> Range(phi); # This is the group G (GAP uses f1, ... for gen’r symbols)
<fp group on the generators [f1, f2, f3, f4, f5, f6]>
gap> AssignGeneratorVariables(G);
#I Assigned the global variables [f1, f2, f3, f4, f5, f6]
gap> # Just to see that the images of [F1, ..., F6] do generate G
gap> Group([f1*f2^2*f3, f1*f2*f3*f4*f5^2*f6^2, f3^2, f4, f5, f6]) = G;
true
gap> Size(Image(phi));
729

Typing: PqExample("EpimorphismStandardPresentation"); runs the above ex-
ample in GAP (see PqExample (3.4.4)). Note that AssignGeneratorVariables
(see AssignGeneratorVariables (Reference: AssignGeneratorVariables)) has only been
available since GAP 4.3.

4.3 Testing p-Groups for Isomorphism

4.3.1 IsPqIsomorphicPGroup

. IsPqIsomorphicPGroup(G, H) (function)

. IsIsomorphicPGroup(G, H) (method)

each return true if G is isomorphic to H , where both G and H must be pc groups of prime power
order. These functions compute and compare in GAP the fp groups given by standard presentations
for G and H (see StandardPresentation (4.2.1)).

Example
gap> G := Group((1,2,3,4), (1,3));
Group([(1,2,3,4), (1,3)])
gap> P1 := Image(IsomorphismPcGroup(G));

ANUPQ 31

Group([f1, f2, f3])
gap> P2 := SmallGroup(8, 5);
<pc group of size 8 with 3 generators>
gap> IsIsomorphicPGroup(P1, P2);
false
gap> P3 := SmallGroup(8, 4);
<pc group of size 8 with 3 generators>
gap> IsIsomorphicPGroup(P1, P3);
false
gap> P4 := SmallGroup(8, 3);
<pc group of size 8 with 3 generators>
gap> IsIsomorphicPGroup(P1, P4);
true

Typing: PqExample("IsIsomorphicPGroup"); runs the above example in GAP (see PqExample
(3.4.4)).

4.4 Computing Descendants of a p-Group

4.4.1 PqDescendants

. PqDescendants(G: options) (function)

returns, for the pc group G which must be of prime power order with a confluent pc presentation
(see IsConfluent (Reference: IsConfluent for pc groups) in the GAP Reference Manual), a list of
descendants (pc groups) of G . Following the colon options a selection of the options listed below
should be given, separated by commas like record components (see Section Reference: Function
Call With Options in the GAP Reference Manual). See Chapter ‘ANUPQ Options’ for detailed
descriptions of the options.

The automorphism group of each descendant D is also computed via a call to the
AutomorphismGroupPGroup function of the AutPGrp package.

• ClassBound := n

• Relators := rels

• OrderBound := n

• StepSize := n , StepSize := list

• RankInitialSegmentSubgroups := n

• SpaceEfficient

• CapableDescendants

• AllDescendants := false

• Exponent := n

• Metabelian

ANUPQ 32

• GroupName := name

• SubList := sub

• BasicAlgorithm

• CustomiseOutput := rec

• SetupFile := filename

• PqWorkspace := workspace

Notes: The function PqDescendants uses the automorphism group of G which it computes via the
package AutPGrp. If this package is not installed an error may be raised. If the automorphism group
of G is insoluble, the pq program will call GAP together with the AutPGrp package for certain orbit-
stabilizer calculations. (So, in any case, one should ensure the AutPGrp package is installed.)

The attributes and property NuclearRank, MultiplicatorRank and IsCapable are set for each
group of the list returned by PqDescendants (see Section ‘Attributes and a Property for fp and pc
p-groups’).

The options options for PqDescendants may be passed in an alternative manner to that already
described, namely you can pass PqDescendants a record as an argument, which contains as entries
some (or all) of the above mentioned. Those parameters which do not occur in the record are set to
their default values.

Note that you cannot set both OrderBound and StepSize.
In the first example we compute all descendants of the Klein four group which have exponent-2

class at most 5 and order at most 26.
Example

gap> F := FreeGroup("a", "b");; a := F.1;; b := F.2;;
gap> G := PcGroupFpGroup(F / [a^2, b^2, Comm(b, a)]);
<pc group of size 4 with 2 generators>
gap> des := PqDescendants(G : OrderBound := 6, ClassBound := 5);;
gap> Length(des);
83
gap> List(des, Size);
[8, 8, 8, 16, 16, 16, 32, 16, 16, 16, 16, 16, 32, 32, 64, 64, 32, 32, 32,

32, 32, 32, 32, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 32, 32, 32, 32,
64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 32, 32, 32, 32, 32, 64, 64, 64,
64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64,
64, 64, 64, 64, 64, 64, 64]

gap> List(des, d -> Length(PCentralSeries(d, 2)) - 1);
[2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,

3, 4,
4, 4,
4, 4, 4, 5, 5, 5, 5, 5]

Below, we compute all capable descendants of order 27 of the elementary abelian group of order 9.
Example

gap> F := FreeGroup(2, "g");
<free group on the generators [g1, g2]>
gap> G := PcGroupFpGroup(F / [F.1^3, F.2^3, Comm(F.1, F.2)]);
<pc group of size 9 with 2 generators>
gap> des := PqDescendants(G : OrderBound := 3, ClassBound := 2,

ANUPQ 33

> CapableDescendants);
[<pc group of size 27 with 3 generators>,

<pc group of size 27 with 3 generators>]
gap> List(des, d -> Length(PCentralSeries(d, 3)) - 1);
[2, 2]
gap> # For comparison let us now compute all descendants
gap> PqDescendants(G : OrderBound := 3, ClassBound := 2);
[<pc group of size 27 with 3 generators>,

<pc group of size 27 with 3 generators>,
<pc group of size 27 with 3 generators>]

In the third example, we compute all capable descendants of the elementary abelian group of order 52

which have exponent-5 class at most 3, exponent 5, and are metabelian.
Example

gap> F := FreeGroup(2, "g");;
gap> G := PcGroupFpGroup(F / [F.1^5, F.2^5, Comm(F.2, F.1)]);
<pc group of size 25 with 2 generators>
gap> des := PqDescendants(G : Metabelian, ClassBound := 3,
> Exponent := 5, CapableDescendants);
[<pc group of size 125 with 3 generators>,

<pc group of size 625 with 4 generators>,
<pc group of size 3125 with 5 generators>]

gap> List(des, d -> Length(PCentralSeries(d, 5)) - 1);
[2, 3, 3]
gap> List(des, d -> Length(DerivedSeries(d)));
[3, 3, 3]
gap> List(des, d -> Maximum(List(d, Order)));
[5, 5, 5]

The examples "PqDescendants-1", "PqDescendants-2" and "PqDescendants-3" (in order) are
essentially the same as the above three examples (see PqExample (3.4.4)).

4.4.2 PqSupplementInnerAutomorphisms

. PqSupplementInnerAutomorphisms(D) (function)

returns a generating set for a supplement to the inner automorphisms of D , in the form of a record
with fields agAutos, agOrder and glAutos, as provided by the pq program. One should be very
careful in using these automorphisms for a descendant calculation.

Note: In principle there must be a way to use those automorphisms in order to compute descen-
dants but there does not seem to be a way to hand back these automorphisms properly to the pq
program.

Example
gap> Q := Pq(FreeGroup(2) : Prime := 3, ClassBound := 1);
<pc group of size 9 with 2 generators>
gap> des := PqDescendants(Q : StepSize := 1);
[<pc group of size 27 with 3 generators>,

<pc group of size 27 with 3 generators>,
<pc group of size 27 with 3 generators>]

gap> S := PqSupplementInnerAutomorphisms(des[3]);
rec(agAutos := [], agOrder := [3, 2, 2, 2],

ANUPQ 34

glAutos := [Pcgs([f1, f2, f3]) -> [f1*f2^2, f2, f3],
Pcgs([f1, f2, f3]) -> [f1^2, f2, f3^2],
Pcgs([f1, f2, f3]) -> [f1^2, f2, f3^2]])

gap> A := AutomorphismGroupPGroup(des[3]);
rec(

agAutos := [Pcgs([f1, f2, f3]) -> [f1^2, f2, f3^2],
Pcgs([f1, f2, f3]) -> [f1*f2^2, f2, f3],
Pcgs([f1, f2, f3]) -> [f1*f3, f2, f3],
Pcgs([f1, f2, f3]) -> [f1, f2*f3, f3]], agOrder := [2, 3, 3, 3],

glAutos := [], glOper := [], glOrder := 1,
group := <pc group of size 27 with 3 generators>,
one := IdentityMapping(<pc group of size 27 with 3 generators>),
size := 54)

Typing: PqExample("PqSupplementInnerAutomorphisms"); runs the above example in GAP
(see PqExample (3.4.4)).

Note that by also including PqStart as a second argument to PqExample one can see how it is
possible, with the aid of PqSetPQuotientToGroup (see PqSetPQuotientToGroup (5.3.7)), to do
the equivalent computations with the interactive versions of Pq and PqDescendants and a single pq
process (recall pq is the name of the external C program).

4.4.3 PqList

. PqList(filename: [SubList := sub]) (function)

reads a file with name filename (a string) and returns the list L of pc groups (or with option
SubList a sublist of L or a single pc group in L) defined in that file. If the option SubList is passed
and has the value sub , then it has the same meaning as for PqDescendants, i.e. if sub is an integer
then PqList returns L[sub]; otherwise, if sub is a list of integers PqList returns Sublist(L, sub
).

Both PqList and SavePqList (see SavePqList (4.4.4)) can be used to save and restore a list of
descendants (see PqDescendants (4.4.1)).

4.4.4 SavePqList

. SavePqList(filename, list) (function)

writes a list of descendants list to a file with name filename (a string).
SavePqList and PqList (see PqList (4.4.3)) can be used to save and restore, respectively, the

results of PqDescendants (see PqDescendants (4.4.1)).

Chapter 5

Interactive ANUPQ functions

Here we describe the interactive functions defined by the ANUPQ package, i.e. the functions that
manipulate and initiate interactive ANUPQ processes. These are functions that extract information
via a dialogue with a running pq process (process used in the UNIX sense). Occasionally, a user needs
the “next step”; the functions provided in this chapter make use of data from previous steps retained
by the pq program, thus allowing the user to interact with the pq program like one can when one uses
the pq program as a stand-alone (see guide.dvi in the standalone-doc directory).

An interactive ANUPQ process is initiated by PqStart and terminated via PqQuit; these func-
tions are described in ection ‘Starting and Stopping Interactive ANUPQ Processes’.

Each interactive ANUPQ function that manipulates an already started interactive ANUPQ pro-
cess, has a form where the first argument is the integer i returned by the initiating PqStart com-
mand, and a second form with one argument fewer (where the integer i is discovered by a default
mechanism, namely by determining the least integer i for which there is a currently active interactive
ANUPQ process). We will thus commonly say that “for the i th (or default) interactive ANUPQ pro-
cess” a certain function performs a given action. In each case, it is an error if i is not the index of an
active interactive process, or there are no current active interactive processes.

Notes: The global method of passing options (via PushOptions), should not be used with any of
the interactive functions. In fact, the OptionsStack should be empty at the time any of the interactive
functions is called.

On quitting GAP, PqQuitAll(); is executed, which terminates all active interactive ANUPQ
processes. If GAP is killed without quitting, before all interactive ANUPQ processes are terminated,
zombie processes (still living child processes whose parents have died), may result. Since zombie
processes do consume resources, in such an event, the responsible computer user should seek out and
terminate those zombie processes (e.g. on Linux: ps xw | grep pq gives you information on the pq
processes corresponding to any interactive ANUPQ processes started in a GAP session; you can then
do kill N for each number N appearing in the first column of this output).

5.1 Starting and Stopping Interactive ANUPQ Processes

5.1.1 PqStart (with group and workspace size)

. PqStart(G, workspace: options) (function)

. PqStart(G: options) (function)

. PqStart(workspace: options) (function)

35

ANUPQ 36

. PqStart(: options) (function)

activate an iostream for an interactive ANUPQ process (i.e. PqStart starts up a pq process and
opens a GAP iostream to “talk” to that process) and returns an integer i that can be used to identify
that process. The argument G should be an fp group or pc group that the user intends to manipulate
using interactive ANUPQ functions. If the function is called without specifying G , a group can be read
in by using the function PqRestorePcPresentation (see PqRestorePcPresentation (5.6.3)). If
PqStart is given an integer argument workspace , then the pq program is started up with a workspace
(an integer array) of size workspace (i.e. 4×workspace bytes in a 32-bit environment); otherwise,
the pq program sets a default workspace of 10000000.

The only options currently recognised by PqStart are Prime, Exponent and Relators (see
Chapter ‘ANUPQ Options’ for detailed descriptions of these options) and if provided they are essen-
tially global for the interactive ANUPQ process, except that any interactive function interacting with
the process and passing new values for these options will over-ride the global values.

5.1.2 PqQuit

. PqQuit(i) (function)

. PqQuit() (function)

closes the stream of the i th or default interactive ANUPQ process and unbinds its ANUPQData.io
record.

Note: It can happen that the pq process, and hence the GAP iostream assigned to communicate
with it, can die, e.g. by the user typing a Ctrl-C while the pq process is engaged in a long calculation.
IsPqProcessAlive (see IsPqProcessAlive (5.2.3)) is provided to check the status of the GAP
iostream (and hence the status of the pq process it was communicating with).

5.1.3 PqQuitAll

. PqQuitAll() (function)

is provided as a convenience, to terminate all active interactive ANUPQ processes with a single
command. It is equivalent to executing PqQuit(i) for all active interactive ANUPQ processes i
(see PqQuit (5.1.2)).

5.2 Interactive ANUPQ Process Utility Functions

5.2.1 PqProcessIndex

. PqProcessIndex(i) (function)

. PqProcessIndex() (function)

With argument i , which must be a positive integer, PqProcessIndex returns i if it corresponds
to an active interactive process, or raises an error. With no arguments it returns the default active inter-
active process or returns fail and emits a warning message to Info at InfoANUPQ or InfoWarning
level 1.

ANUPQ 37

Note: Essentially, an interactive ANUPQ process i is “active” if ANUPQData.io[i] is bound
(i.e. we still have some data telling us about it). Also see PqStart (5.1.1).

5.2.2 PqProcessIndices

. PqProcessIndices() (function)

returns the list of integer indices of all active interactive ANUPQ processes (see PqProcessIndex
(5.2.1) for the meaning of “active”).

5.2.3 IsPqProcessAlive

. IsPqProcessAlive(i) (function)

. IsPqProcessAlive() (function)

return true if the GAP iostream of the i th (or default) interactive ANUPQ process started by
PqStart is alive (i.e. can still be written to), or false, otherwise. (See the notes for PqStart (5.1.1)
and PqQuit (5.1.2).)

If the user does not yet have a gap> prompt then usually the pq program is still away doing
something and an ANUPQ interface function is still waiting for a reply. Typing a Ctrl-C (i.e. hold-
ing down the Ctrl key and typing c) will stop the waiting and send GAP into a break-loop, from
which one has no option but to quit;. The typing of Ctrl-C, in such a circumstance, usually causes
the stream of the interactive ANUPQ process to die; to check this we provide IsPqProcessAlive
(see IsPqProcessAlive).

The GAP iostream of an interactive ANUPQ process will also die if the pq program has a segmen-
tation fault. We do hope that this never happens to you, but if it does and the failure is reproducible,
then it’s a bug and we’d like to know about it. Please read the README that comes with the ANUPQ
package to find out what to include in a bug report and who to email it to.

5.3 Interactive Versions of Non-interactive ANUPQ Functions

5.3.1 Pq (interactive)

. Pq(i: options) (function)

. Pq(: options) (function)

return, for the fp or pc group (let us call it F), of the i th or default interactive ANUPQ process,
the p-quotient of F specified by options , as a pc group; F must previously have been given (as
first argument) to PqStart to start the interactive ANUPQ process (see PqStart (5.1.1)) or restored
from file using the function PqRestorePcPresentation (see PqRestorePcPresentation (5.6.3)).
Following the colon options is a selection of the options listed for the non-interactive Pq function
(see Pq (4.1.1)), separated by commas like record components (see Section Reference: Function Call
With Options in the GAP Reference Manual), except that the options SetupFile or PqWorkspace
are ignored by the interactive Pq, and RedoPcp is an option only recognised by the interactive Pq
i.e. the following options are recognised by the interactive Pq function:

• Prime := p

ANUPQ 38

• ClassBound := n

• Exponent := n

• Relators := rels

• Metabelian

• Identities := funcs

• GroupName := name

• OutputLevel := n

• RedoPcp

Detailed descriptions of the above options may be found in Chapter ‘ANUPQ Options’.
As a minimum the Pq function must have a value for the Prime option, though Prime need not be

passed again in the case it has previously been provided, e.g. to PqStart (see PqStart (5.1.1)) when
starting the interactive process.

The behaviour of the interactive Pq function depends on the current state of the pc presentation
stored by the pq program:

1. If no pc presentation has yet been computed (the case immediately after the PqStart call ini-
tiating the process) then the quotient group of the input group of the process of largest lower
exponent-p class bounded by the value of the ClassBound option (see 6.2) is returned.

2. If the current pc presentation of the process was determined by a previous call to Pq or
PqEpimorphism, and the current call has a larger value ClassBound then the class is extended
as much as is possible and the quotient group of the input group of the process of the new lower
exponent-p class is returned.

3. If the current pc presentation of the process was determined by a previous call to PqPCover then
a consistent pc presentation of a quotient for the current class is determined before proceeding
as in 2.

4. If the RedoPcp option is supplied the current pc presentation is scrapped, all options must be
re-supplied (in particular, Prime must be supplied) and then the Pq function proceeds as in 1.

See Section ‘Attributes and a Property for fp and pc p-groups’ for the attributes and property
NuclearRank, MultiplicatorRank and IsCapable which may be applied to the group returned
by Pq.

The following is one of the examples for the non-interactive Pq redone with the interactive version.
Also, we set the option OutputLevel to 1 (see 6.2), in order to see the orders of the quotients of all
the classes determined, and we set the InfoANUPQ level to 2 (see InfoANUPQ (3.3.1)), so that we catch
the timing information.

Example
gap> F := FreeGroup("a", "b");; a := F.1;; b := F.2;;
gap> G := F / [a^4, b^4];
<fp group on the generators [a, b]>
gap> PqStart(G);
1

ANUPQ 39

gap> SetInfoLevel(InfoANUPQ, 2); #To see timing information
gap> Pq(: Prime := 2, ClassBound := 3, OutputLevel := 1);
#I Lower exponent-2 central series for [grp]
#I Group: [grp] to lower exponent-2 central class 1 has order 2^2
#I Group: [grp] to lower exponent-2 central class 2 has order 2^5
#I Group: [grp] to lower exponent-2 central class 3 has order 2^8
#I Computation of presentation took 0.00 seconds
<pc group of size 256 with 8 generators>

5.3.2 PqEpimorphism (interactive)

. PqEpimorphism(i: options) (function)

. PqEpimorphism(: options) (function)

return, for the fp or pc group (let us call it F), of the i th or default interactive ANUPQ process,
an epimorphism from F onto the p-quotient of F specified by options ; F must previously have been
given (as first argument) to PqStart to start the interactive ANUPQ process (see PqStart (5.1.1)).
Since the underlying interactions with the pq program effected by the interactive PqEpimorphism
are identical to those effected by the interactive Pq, everything said regarding the requirements
and behaviour of the interactive Pq function (see Pq (5.3.1)) is also the case for the interactive
PqEpimorphism.

Note: See Section ‘Attributes and a Property for fp and pc p-groups’ for the attributes and property
NuclearRank, MultiplicatorRank and IsCapable which may be applied to the image group of the
epimorphism returned by PqEpimorphism.

5.3.3 PqPCover (interactive)

. PqPCover(i: options) (function)

. PqPCover(: options) (function)

return, for the fp or pc group of the i th or default interactive ANUPQ process, the p-covering
group of the p-quotient Pq(i : options) or Pq(: options), modulo the following:

1. If no pc presentation has yet been computed (the case immediately after the PqStart call
initiating the process) and the group F of the process is already a p-group, in the sense that
HasIsPGroup(F) and IsPGroup(F) is true, then

Prime
defaults to PrimePGroup(F), if not supplied and HasPrimePGroup(F) = true; and

ClassBound
defaults to PClassPGroup(F) if HasPClassPGroup(F) = true if not supplied, or to
the usual default of 63, otherwise.

2. If a pc presentation has been computed and none of options is RedoPcp or if no pc presentation
has yet been computed but 1. does not apply then PqPCover(i : options); is equivalent
to:

Pq(i : options);
PqPCover(i);

ANUPQ 40

3. If the RedoPcp option is supplied the current pc presentation is scrapped, and PqPCover pro-
ceeds as in 1. or 2. but without the RedoPcp option.

5.3.4 PqStandardPresentation (interactive)

. PqStandardPresentation([i]: options) (function)

. StandardPresentation([i]: options) (function)

return, for the i th or default interactive ANUPQ process, the p -quotient of the group F of the
process, specified by options , as an fp group which has a standard presentation. Here options is a
selection of the options from the following list (see Chapter ‘ANUPQ Options’ for detailed descrip-
tions); this list is the same as for the non-interactive version of PqStandardPresentation except for
the omission of options SetupFile and PqWorkspace (see PqStandardPresentation (4.2.1)).

• Prime := p

• pQuotient := Q

• ClassBound := n

• Exponent := n

• Metabelian

• GroupName := name

• OutputLevel := n

• StandardPresentationFile := filename

Unless F is a pc p -group, or the option Prime has been passed to a previous interactive function
for the process to compute a p -quotient for F , the user must supply either the option Prime or the
option pQuotient (if both Prime and pQuotient are supplied, the prime p is determined by applying
PrimePGroup (see PrimePGroup (Reference: PrimePGroup) in the Reference Manual) to the value
of pQuotient).

Taking one of the examples for the non-interactive version of StandardPresentation
(see StandardPresentation (4.2.1)) that required two separate calls to the pq program, we now
show how it can be done by setting up a dialogue with just the one pq process, using the interactive
version of StandardPresentation:

Example
gap> F4 := FreeGroup("a", "b", "c", "d");;
gap> a := F4.1;; b := F4.2;; c := F4.3;; d := F4.4;;
gap> G4 := F4 / [b^4, b^2 / Comm(Comm (b, a), a), d^16,
> a^16 / (c * d), b^8 / (d * c^4)];
<fp group on the generators [a, b, c, d]>
gap> SetInfoLevel(InfoANUPQ, 1); #Only essential Info please
gap> PqStart(G4); #Start a new interactive process for a new group
2
gap> K := Pq(2 : Prime := 2, ClassBound := 1); #‘pq’ process no. is 2
<pc group of size 4 with 2 generators>
gap> StandardPresentation(2 : pQuotient := K, ClassBound := 14);
<fp group with 53 generators>

ANUPQ 41

Notes
In contrast to the function Pq (see Pq (4.1.1)) which returns a pc group,

PqStandardPresentation or StandardPresentation returns an fp group. This is because
the output is mainly used for isomorphism testing for which an fp group is enough. However, the
presentation is a polycyclic presentation and if you need to do any further computation with this group
(e.g. to find the order) you can use the function PcGroupFpGroup (see PcGroupFpGroup (Reference:
PcGroupFpGroup) in the GAP Reference Manual) to form a pc group.

If the user does not supply a p -quotient Q via the pQuotient option, and the prime p is either
supplied, stored, or F is a pc p -group, then a p -quotient Q is computed. (The value of the prime p is
stored if passed initially to PqStart or to a subsequent interactive process.) Note that a stored value
for pQuotient (from a prior call to Pq) does not have precedence over a value for the prime p . If the
user does supply a p -quotient Q via the pQuotient option, the package AutPGrp is called to compute
the automorphism group of Q ; an error will occur that asks the user to install the package AutPGrp if
the automorphism group cannot be computed.

If any of the interactive functions PqStandardPresentation, StandardPresentation,
EpimorphismPqStandardPresentation or EpimorphismStandardPresentation has been called
previously for an interactive process, a subsequent call to any of these functions for the same pro-
cess returns the previously computed value. Note that all these functions compute both an epimor-
phism and an fp group and store the results in the SPepi and SP fields of the data record associ-
ated with the process. See the example for the interactive EpimorphismStandardPresentation
(EpimorphismStandardPresentation (5.3.5)).

The attributes and property NuclearRank, MultiplicatorRank and IsCapable are set for the
group returned by PqStandardPresentation or StandardPresentation (see Section ‘Attributes
and a Property for fp and pc p-groups’).

5.3.5 EpimorphismPqStandardPresentation (interactive)

. EpimorphismPqStandardPresentation([i]: options) (function)

. EpimorphismStandardPresentation([i]: options) (method)

Each of the above functions accepts the same arguments and options as the interactive form of
StandardPresentation (see StandardPresentation (5.3.4)) and returns an epimorphism from
the fp or pc group F of the i th or default interactive ANUPQ process onto the finitely presented group
given by a standard presentation, i.e. if S is the standard presentation computed for the p-quotient of
F by StandardPresentation then EpimorphismStandardPresentation returns the epimorphism
from F to the group with presentation S . The group F must have been given (as first argument) to
PqStart to start the interactive ANUPQ process (see PqStart (5.1.1)).

Taking our earlier non-interactive example (see EpimorphismPqStandardPresentation
(4.2.2)) and modifying it a little, we illustrate, as for the interactive StandardPresentation
(see StandardPresentation (5.3.4)), how something that required two separate calls to the pq pro-
gram can now be achieved with a dialogue with just one pq process. Also, observe that calls to one
of the standard presentation functions (as mentioned in the notes of StandardPresentation (5.3.4))
computes and stores both an fp group with a standard presentation and an epimorphism; subsequent
calls to a standard presentation function for the same process simply return the appropriate stored
value.

Example
gap> F := FreeGroup(6, "F");;
gap> x := F.1;; y := F.2;; z := F.3;; w := F.4;; a := F.5;; b := F.6;;

ANUPQ 42

gap> R := [x^3 / w, y^3 / w * a^2 * b^2, w^3 / b,
> Comm (y, x) / z, Comm (z, x), Comm (z, y) / a, z^3];
[F1^3*F4^-1, F2^3*F4^-1*F5^2*F6^2, F4^3*F6^-1, F2^-1*F1^-1*F2*F1*F3^-1,

F3^-1*F1^-1*F3*F1, F3^-1*F2^-1*F3*F2*F5^-1, F3^3]
gap> Q := F / R;
<fp group on the generators [F1, F2, F3, F4, F5, F6]>
gap> PqStart(Q);
3
gap> G := Pq(3 : Prime := 3, ClassBound := 3);
<pc group of size 729 with 6 generators>
gap> lev := InfoLevel(InfoANUPQ);; # Save current InfoANUPQ level
gap> SetInfoLevel(InfoANUPQ, 2); # To see computation times
gap> # It is not necessary to pass the ‘Prime’ option to
gap> # ‘EpimorphismStandardPresentation’ since it was previously
gap> # passed to ‘Pq’:
gap> phi := EpimorphismStandardPresentation(3 : ClassBound := 3);
#I Class 1 3-quotient and its 3-covering group computed in 0.00 seconds
#I Order of GL subgroup is 48
#I No. of soluble autos is 0
#I dim U = 1 dim N = 3 dim M = 3
#I nice stabilizer with perm rep
#I Computing standard presentation for class 2 took 0.00 seconds
#I Computing standard presentation for class 3 took 0.01 seconds
[F1, F2, F3, F4, F5, F6] -> [f1*f2^2*f3*f4^2*f5^2, f1*f2*f3*f5, f3^2,

f4*f6^2, f5, f6]
gap> # Image of phi should be isomorphic to G ...
gap> # let’s check the order is correct:
gap> Size(Image(phi));
729
gap> # ‘StandardPresentation’ and ‘EpimorphismStandardPresentation’
gap> # behave like attributes, so no computation is done when
gap> # either is called again for the same process ...
gap> StandardPresentation(3 : ClassBound := 3);
<fp group of size 729 on the generators [f1, f2, f3, f4, f5, f6]>
gap> # No timing data was Info-ed since no computation was done
gap> SetInfoLevel(InfoANUPQ, lev); # Restore previous InfoANUPQ level

A very similar (essential details are the same) example to the above may be executed live, by typing:
PqExample("EpimorphismStandardPresentation-i");.

Note: The notes for PqStandardPresentation or StandardPresentation
(see PqStandardPresentation (5.3.4)) apply also to EpimorphismPqStandardPresentation or
EpimorphismStandardPresentation except that their return value is an epimorphism onto an fp
group, i.e. one should interpret the phrase “returns an fp group” as “returns an epimorphism onto an
fp group” etc.

5.3.6 PqDescendants (interactive)

. PqDescendants(i: options) (function)

. PqDescendants(: options) (function)

ANUPQ 43

return for the pc group G of the i th or default interactive ANUPQ process, which must be of
prime power order with a confluent pc presentation (see IsConfluent (Reference: IsConfluent for
pc groups) in the GAP Reference Manual), a list of descendants (pc groups) of G . The group G is usu-
ally given as first argument to PqStart when starting the interactive ANUPQ process (see PqStart
(5.1.1)). Alternatively, one may initiate the process with an fp group, use Pq interactively (see Pq
(5.3.1)) to create a pc group and use PqSetPQuotientToGroup (see PqSetPQuotientToGroup
(5.3.7)), which involves no computation, to set the pc group returned by Pq as the group of the process.
Note that repeating a call to PqDescendants for the same interactive ANUPQ process simply returns
the list of descendants originally calculated; a warning is emitted at InfoANUPQ level 1 reminding you
of this should you do this.

After the colon, options a selection of the options listed for the non-interactive PqDescendants
function (see PqDescendants (4.4.1)), should be given, separated by commas like record components
(see Section Reference: Function Call With Options in the GAP Reference Manual), except that the
options SetupFile or PqWorkspace are ignored by the interactive PqDescendants, i.e. the following
options are recognised by the interactive PqDescendants function:

• ClassBound := n

• Relators := rels

• OrderBound := n

• StepSize := n , StepSize := list

• RankInitialSegmentSubgroups := n

• SpaceEfficient

• CapableDescendants

• AllDescendants := false

• Exponent := n

• Metabelian

• GroupName := name

• SubList := sub

• BasicAlgorithm

• CustomiseOutput := rec

Notes: The function PqDescendants uses the automorphism group of G which it computes via the
package AutPGrp if the automorphism group of G is not already present. If AutPGrp is not installed
an error may be raised. If the automorphism group of G is insoluble the pq program will call GAP
together with the AutPGrp package for certain orbit-stabilizer calculations.

The attributes and property NuclearRank, MultiplicatorRank and IsCapable are set for each
group of the list returned by PqDescendants (see Section ‘Attributes and a Property for fp and pc
p-groups’).

Let us now repeat the examples previously given for the non-interactive PqDescendants, but this
time with the interactive version of PqDescendants:

ANUPQ 44

Example
gap> F := FreeGroup("a", "b");; a := F.1;; b := F.2;;
gap> G := PcGroupFpGroup(F / [a^2, b^2, Comm(b, a)]);
<pc group of size 4 with 2 generators>
gap> PqStart(G); #This will now be the 4th interactive process running
4
gap> des := PqDescendants(4 : OrderBound := 6, ClassBound := 5);;
gap> Length(des);
83
gap> List(des, Size);
[8, 8, 8, 16, 16, 16, 32, 16, 16, 16, 16, 16, 32, 32, 64, 64, 32, 32, 32,

32, 32, 32, 32, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 32, 32, 32, 32,
64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 32, 32, 32, 32, 32, 64, 64, 64,
64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64,
64, 64, 64, 64, 64, 64, 64]

gap> List(des, d -> Length(PCentralSeries(d, 2)) - 1);
[2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,

3, 4,
4, 4,
4, 4, 4, 5, 5, 5, 5, 5]

In the second example we compute all capable descendants of order 27 of the elementary abelian
group of order 9.

Example
gap> F := FreeGroup(2, "g");;
gap> G := PcGroupFpGroup(F / [F.1^3, F.2^3, Comm(F.1, F.2)]);
<pc group of size 9 with 2 generators>
gap> PqStart(G); #This will now be the 5th interactive process running
5
gap> des := PqDescendants(5 : OrderBound := 3, ClassBound := 2,
> CapableDescendants);
[<pc group of size 27 with 3 generators>,

<pc group of size 27 with 3 generators>]
gap> List(des, d -> Length(PCentralSeries(d, 3)) - 1);
[2, 2]
gap> # For comparison let us now compute all descendants
gap> # (using the non-interactive Pq function)
gap> PqDescendants(G : OrderBound := 3, ClassBound := 2);
[<pc group of size 27 with 3 generators>,

<pc group of size 27 with 3 generators>,
<pc group of size 27 with 3 generators>]

In the third example, we compute all capable descendants of the elementary abelian group of order 52

which have exponent-5 class at most 3, exponent 5, and are metabelian.
Example

gap> F := FreeGroup(2, "g");;
gap> G := PcGroupFpGroup(F / [F.1^5, F.2^5, Comm(F.2, F.1)]);
<pc group of size 25 with 2 generators>
gap> PqStart(G); #This will now be the 6th interactive process running
6
gap> des := PqDescendants(6 : Metabelian, ClassBound := 3,
> Exponent := 5, CapableDescendants);

ANUPQ 45

[<pc group of size 125 with 3 generators>,
<pc group of size 625 with 4 generators>,
<pc group of size 3125 with 5 generators>]

gap> List(des, d -> Length(PCentralSeries(d, 5)) - 1);
[2, 3, 3]
gap> List(des, d -> Length(DerivedSeries(d)));
[3, 3, 3]
gap> List(des, d -> Maximum(List(d, Order)));
[5, 5, 5]

5.3.7 PqSetPQuotientToGroup

. PqSetPQuotientToGroup(i) (function)

. PqSetPQuotientToGroup() (function)

for the i th or default interactive ANUPQ process, set the p-quotient previously computed by
the interactive Pq function (see Pq (5.3.1)) to be the group of the process. This function is supplied
to enable the computation of descendants of a p-quotient that is already known to the pq program,
via the interactive PqDescendants function (see PqDescendants (5.3.6)), thus avoiding the need to
re-submit it and have the pq program recompute it.

Note: See the function PqPGSetDescendantToPcp (PqPGSetDescendantToPcp (5.9.4)) for a
mechanism to make (the p-cover of) a particular descendants the current group of the process.

The following example of the usage of PqSetPQuotientToGroup, which is essentially equivalent
to what is obtained by running PqExample("PqDescendants-1-i");, redoes the first example of
PqDescendants (5.3.6) (which computes the descendants of the Klein four group).

Example
gap> F := FreeGroup("a", "b");
<free group on the generators [a, b]>
gap> procId := PqStart(F : Prime := 2);
7
gap> Pq(procId : ClassBound := 1);
<pc group of size 4 with 2 generators>
gap> PqSetPQuotientToGroup(procId);
gap> des := PqDescendants(procId : OrderBound := 6, ClassBound := 5);;
gap> Length(des);
83
gap> List(des, Size);
[8, 8, 8, 16, 16, 16, 32, 16, 16, 16, 16, 16, 32, 32, 64, 64, 32, 32, 32,

32, 32, 32, 32, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 32, 32, 32, 32,
64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 32, 32, 32, 32, 32, 64, 64, 64,
64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64,
64, 64, 64, 64, 64, 64, 64]

gap> List(des, d -> Length(PCentralSeries(d, 2)) - 1);
[2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,

3, 4,
4, 4,
4, 4, 4, 5, 5, 5, 5, 5]

ANUPQ 46

5.4 Low-level Interactive ANUPQ functions based on menu items of the
pq program

The pq program has 5 menus, the details of which the reader will not normally need to know, but if she
wishes to know the details they may be found in the standalone manual: guide.dvi. Both guide.dvi
and the pq program refer to the items of these 5 menus as “options”, which do not correspond in any
way to the options used by any of the GAP functions that interface with the pq program.

Warning: The commands provided in this section are intended to provide something like the
interactive functionality one has when running the standalone, from within GAP. The pq standalone
(in particular, its “advanced” menus) assumes some expertise of the user; doing the “wrong” thing can
cause the program to crash. While a number of safeguards have been provided in the GAP interface
to the pq program, these are not foolproof, and the user should exercise care and ensure pre-requisites
of the various commands are met.

5.5 General commands

The following commands either use a menu item from whatever menu is “current” for the pq program,
or have general application and are not associated with just one menu item of the pq program.

5.5.1 PqNrPcGenerators

. PqNrPcGenerators(i) (function)

. PqNrPcGenerators() (function)

for the i th or default interactive ANUPQ process, return the number of pc generators of the lower
exponent p-class quotient of the group currently determined by the process. This also applies if the pc
presentation is not consistent.

5.5.2 PqFactoredOrder

. PqFactoredOrder(i) (function)

. PqFactoredOrder() (function)

for the i th or default interactive ANUPQ process, return an integer pair [p, n] where p is a
prime and n is the number of pc generators (see PqNrPcGenerators (5.5.1)) in the pc presentation
of the quotient group currently determined by the process. If this presentation is consistent, then pn

is the order of the quotient group. Otherwise (if tails have been added but the necessary consistency
checks, relation collections, exponent law checks and redundant generator eliminations have not yet
been done), pn is an upper bound for the order of the group.

5.5.3 PqOrder

. PqOrder(i) (function)

. PqOrder() (function)

for the i th or default interactive ANUPQ process, return pn where [p, n] is the pair as returned
by PqFactoredOrder (see PqFactoredOrder (5.5.2)).

ANUPQ 47

5.5.4 PqPClass

. PqPClass(i) (function)

. PqPClass() (function)

for the i th or default interactive ANUPQ process, return the lower exponent p-class of the quotient
group currently determined by the process.

5.5.5 PqWeight

. PqWeight(i, j) (function)

. PqWeight(j) (function)

for the i th or default interactive ANUPQ process, return the weight of the j th pc generator of the
lower exponent p-class quotient of the group currently determined by the process, or fail if there is
no such numbered pc generator.

5.5.6 PqCurrentGroup

. PqCurrentGroup(i) (function)

. PqCurrentGroup() (function)

for the i th or default interactive ANUPQ process, return the group whose pc presentation is
determined by the process as a GAP pc group (either a lower exponent p-class quotient of the start
group or the p-cover of such a quotient).

Notes: See Section ‘Attributes and a Property for fp and pc p-groups’ for the attributes and property
NuclearRank, MultiplicatorRank and IsCapable which may be applied to the group returned by
PqCurrentGroup.

5.5.7 PqDisplayPcPresentation

. PqDisplayPcPresentation(i: [OutputLevel := lev]) (function)

. PqDisplayPcPresentation(: [OutputLevel := lev]) (function)

for the i th or default interactive ANUPQ process, direct the pq program to display the pc presen-
tation of the lower exponent p-class quotient of the group currently determined by the process.

Except if the last command communicating with the pq program was a p-group generation com-
mand (for which there is only a verbose output level), to set the amount of information this command
displays you may wish to call PqSetOutputLevel first (see PqSetOutputLevel (5.5.8)), or equiva-
lently pass the option OutputLevel (see 6.2).

Note: For those familiar with the pq program, PqDisplayPcPresentation performs menu item
4 of the current menu of the pq program.

5.5.8 PqSetOutputLevel

. PqSetOutputLevel(i, lev) (function)

. PqSetOutputLevel(lev) (function)

ANUPQ 48

for the i th or default interactive ANUPQ process, direct the pq program to set the output level of
the pq program to lev .

Note: For those familiar with the pq program, PqSetOutputLevel performs menu item 5 of the
main (or advanced) p-Quotient menu, or the Standard Presentation menu.

5.5.9 PqEvaluateIdentities

. PqEvaluateIdentities(i: [Identities := funcs]) (function)

. PqEvaluateIdentities(: [Identities := funcs]) (function)

for the i th or default interactive ANUPQ process, invoke the evaluation of identities defined by
the Identities option, and eliminate any redundant pc generators formed. Since a previous value of
Identities is saved in the data record of the process, it is unnecessary to pass the Identities if set
previously.

Note: This function is mainly implemented at the GAP level. It does not correspond to a menu
item of the pq program.

5.6 Commands from the Main p-Quotient menu

5.6.1 PqPcPresentation

. PqPcPresentation(i: options) (function)

. PqPcPresentation(: options) (function)

for the i th or default interactive ANUPQ process, direct the pq program to compute the pc pre-
sentation of the quotient (determined by options) of the group of the process, which for process i is
stored as ANUPQData.io[i].group.

The possible options are the same as for the interactive Pq (see Pq (5.3.1)) function, except
for RedoPcp (which, in any case, would be superfluous), namely: Prime, ClassBound, Exponent,
Relators, GroupName, Metabelian, Identities and OutputLevel (see Chapter ‘ANUPQ Op-
tions’ for a detailed description for these options). The option Prime is required unless already pro-
vided to PqStart.

Notes
The pc presentation is held by the pq program. In contrast to Pq (see Pq (5.3.1)), no GAP pc group

is returned; see PqCurrentGroup (PqCurrentGroup (5.5.6)) if you need the corresponding GAP pc
group.

PqPcPresentation(i: options); is roughly equivalent to the following sequence of low-
level commands:

PqPcPresentation(i: opts); #class 1 call
for c in [2 .. class] do

PqNextClass(i);
od;

where opts is options except with the ClassBound option set to 1, and class is either the
maximum class of a p -quotient of the group of the process or the user-supplied value of the op-
tion ClassBound (whichever is smaller). If the Identities option has been set, both the first

ANUPQ 49

PqPcPresentation class 1 call and the PqNextClass calls invoke PqEvaluateIdentities(i);
as their final step.

For those familiar with the pq program, PqPcPresentation performs menu item 1 of the main
p-Quotient menu.

5.6.2 PqSavePcPresentation

. PqSavePcPresentation(i, filename) (function)

. PqSavePcPresentation(filename) (function)

for the i th or default interactive ANUPQ process, direct the pq program to save the pc pre-
sentation previously computed for the quotient of the group of that process to the file with name
filename . If the first character of the string filename is not /, filename is assumed to be the path
of a writable file relative to the directory in which GAP was started. A saved file may be restored by
PqRestorePcPresentation (see PqRestorePcPresentation (5.6.3)).

Note: For those familiar with the pq program, PqSavePcPresentation performs menu item 2 of
the main p-Quotient menu.

5.6.3 PqRestorePcPresentation

. PqRestorePcPresentation(i, filename) (function)

. PqRestorePcPresentation(filename) (function)

for the i th or default interactive ANUPQ process, direct the pq program to restore the pc pre-
sentation previously saved to filename , by PqSavePcPresentation (see PqSavePcPresentation
(5.6.2)). If the first character of the string filename is not /, filename is assumed to be the path of
a readable file relative to the directory in which GAP was started.

Note: For those familiar with the pq program, PqRestorePcPresentation performs menu item
3 of the main p-Quotient menu.

5.6.4 PqNextClass

. PqNextClass(i: [QueueFactor]) (function)

. PqNextClass(: [QueueFactor]) (function)

for the i th or default interactive ANUPQ process, direct the pq program to calculate the next class
of ANUPQData.io[i].group.

PqNextClass accepts the option QueueFactor (see also 6.2) which should be a positive integer
if automorphisms have been previously supplied. If the pq program requires a queue factor and none
is supplied via the option QueueFactor a default of 15 is taken.

Notes
The single command: PqNextClass(i); is equivalent to executing

PqComputePCover(i);
PqCollectDefiningRelations(i);
PqDoExponentChecks(i);
PqEliminateRedundantGenerators(i);

ANUPQ 50

If the Identities option is set the PqEliminateRedundantGenerators(i); step is essentially
replaced by PqEvaluateIdentities(i); (which invokes its own elimination of redundant genera-
tors).

For those familiar with the pq program, PqNextClass performs menu item 6 of the main p-
Quotient menu.

5.6.5 PqComputePCover

. PqComputePCover(i) (function)

. PqComputePCover() (function)

for the i th or default interactive ANUPQ processi, directi, the pq program to compute the p-
covering group of ANUPQData.io[i].group. In contrast to the function PqPCover (see PqPCover
(4.1.3)), this function does not return a GAP pc group.

Notes
The single command: PqComputePCover(i); is equivalent to executing

PqSetupTablesForNextClass(i);
PqTails(i, 0);
PqDoConsistencyChecks(i, 0, 0);
PqEliminateRedundantGenerators(i);

For those familiar with the pq program, PqComputePCover performs menu item 7 of the main p-
Quotient menu.

5.7 Commands from the Advanced p-Quotient menu

5.7.1 PqCollect

. PqCollect(i, word) (function)

. PqCollect(word) (function)

for the i th or default interactive ANUPQ process, instruct the pq program to do a collection on
word , a word in the current pc generators (the form of word required is described below). PqCollect
returns the resulting word of the collection as a list of generator number, exponent pairs (the same
form as the second allowed input form of word ; see below).

The argument word may be input in either of the following ways:

1. word may be a string, where the i th pc generator is represented by xi , e.g. "x3*x2^2*x1".
This way is quite versatile as parentheses and left-normed commutators – using square brackets,
in the same way as PqGAPRelators (see PqGAPRelators (3.4.2)) – are permitted; word is
checked for correct syntax via PqParseWord (see PqParseWord (3.4.3)).

2. Otherwise, word must be a list of generator number, exponent pairs of integers, i.e. each pair
represents a “syllable” so that [[3, 1], [2, 2], [1, 1]] represents the same word as
that of the example given for the first allowed form of word .

Note: For those familiar with the pq program, PqCollect performs menu item 1 of the Advanced
p-Quotient menu.

ANUPQ 51

5.7.2 PqSolveEquation

. PqSolveEquation(i, a, b) (function)

. PqSolveEquation(a, b) (function)

for the i th or default interactive ANUPQ process, direct the pq program to solve a ∗x = b for x ,
where a and b are words in the pc generators. For the representation of these words see the description
of the function PqCollect (PqCollect (5.7.1)).

Note: For those familiar with the pq program, PqSolveEquation performs menu item 2 of the
Advanced p-Quotient menu.

5.7.3 PqCommutator

. PqCommutator(i, words, pow) (function)

. PqCommutator(words, pow) (function)

for the i th or default interactive ANUPQ process, instruct the pq program to compute the left
normed commutator of the list words of words in the current pc generators raised to the integer power
pow , and return the resulting word as a list of generator number, exponent pairs. The form required for
each word of words is the same as that required for the word argument of PqCollect (see PqCollect
(5.7.1)). The form of the output word is also the same as for PqCollect.

Note: For those familiar with the pq program, PqCommutator performs menu item 3 of the Ad-
vanced p-Quotient menu.

5.7.4 PqSetupTablesForNextClass

. PqSetupTablesForNextClass(i) (function)

. PqSetupTablesForNextClass() (function)

for the i th or default interactive ANUPQ process, direct the pq program to set up tables for
the next class. As as side-effect, after PqSetupTablesForNextClass(i) the value returned by
PqPClass(i) will be one more than it was previously.

Note: For those familiar with the pq program, PqSetupTablesForNextClass performs menu
item 6 of the Advanced p-Quotient menu.

5.7.5 PqTails

. PqTails(i, weight) (function)

. PqTails(weight) (function)

for the i th or default interactive ANUPQ process, direct the pq program to compute and add
tails of weight weight if weight is in the integer range [2 .. PqPClass(i)] (assuming i is the
number of the process, even in the default case) or for all weights if weight = 0.

If weight is non-zero, then tails that introduce new generators for only weight weight are com-
puted and added, and in this case and if weight < PqPClass(i), it is assumed that the tails that
introduce new generators for each weight from PqPClass(i) down to weight weight + 1 have al-
ready been added. You may wish to call PqSetMetabelian (see PqSetMetabelian (5.7.16)) prior
to calling PqTails.

ANUPQ 52

Notes
For its use in the context of finding the next class see PqNextClass (5.6.4); in particular, a call

to PqSetupTablesForNextClass (see PqSetupTablesForNextClass (5.7.4)) needs to have been
made prior to calling PqTails.

The single command: PqTails(i, weight); is equivalent to

PqComputeTails(i, weight);
PqAddTails(i, weight);

For those familiar with the pq program, PqTails uses menu item 7 of the Advanced p-Quotient menu.

5.7.6 PqComputeTails

. PqComputeTails(i, weight) (function)

. PqComputeTails(weight) (function)

for the i th or default interactive ANUPQ process, direct the pq program to compute tails of weight
weight if weight is in the integer range [2 .. PqPClass(i)] (assuming i is the number of the
process, even in the default case) or for all weights if weight = 0. See PqTails (PqTails (5.7.5))
for more details.

Note: For those familiar with the pq program, PqComputeTails uses menu item 7 of the Ad-
vanced p-Quotient menu.

5.7.7 PqAddTails

. PqAddTails(i, weight) (function)

. PqAddTails(weight) (function)

for the i th or default interactive ANUPQ process, direct the pq program to add the tails of weight
weight , previously computed by PqComputeTails (see PqComputeTails (5.7.6)), if weight is in
the integer range [2 .. PqPClass(i)] (assuming i is the number of the process, even in the
default case) or for all weights if weight = 0. See PqTails (PqTails (5.7.5)) for more details.

Note: For those familiar with the pq program, PqAddTails uses menu item 7 of the Advanced
p-Quotient menu.

5.7.8 PqDoConsistencyChecks

. PqDoConsistencyChecks(i, weight, type) (function)

. PqDoConsistencyChecks(weight, type) (function)

for the i th or default interactive ANUPQ process, do consistency checks for weight weight if
weight is in the integer range [3 .. PqPClass(i)] (assuming i is the number of the process)
or for all weights if weight = 0, and for type type if type is in the range [1, 2, 3] (see below)
or for all types if type = 0. (For its use in the context of finding the next class see PqNextClass
(5.6.4).)

The type of a consistency check is defined as follows. PqDoConsistencyChecks(i, weight,
type) for weight in [3 .. PqPClass(i)] and the given value of type invokes the equivalent of
the following PqDoConsistencyCheck calls (see PqDoConsistencyCheck (5.7.17)):

ANUPQ 53

type = 1:
PqDoConsistencyCheck(i, a, a, a) checks 2 * PqWeight(i, a) + 1 = weight ,
for pc generators of index a .

type = 2:
PqDoConsistencyCheck(i, b, b, a) checks for pc generators of indices b , a satisfyingx
both b > a and PqWeight(i, b) + PqWeight(i, a) + 1 = weight .

type = 3:
PqDoConsistencyCheck(i, c, b, a) checks for pc generators of indices c , b , a satisfying
c > b > a and the sum of the weights of these generators equals weight .

Notes
PqWeight(i, j) returns the weight of the j th pc generator, for process i (see PqWeight

(5.5.5)).
It is assumed that tails for the given weight (or weights) have already been added (see PqTails

(5.7.5)).
For those familiar with the pq program, PqDoConsistencyChecks performs menu item 8 of the

Advanced p-Quotient menu.

5.7.9 PqCollectDefiningRelations

. PqCollectDefiningRelations(i) (function)

. PqCollectDefiningRelations() (function)

for the i th or default interactive ANUPQ process, direct the pq program to collect the images of
the defining relations of the original fp group of the process, with respect to the current pc presentation,
in the context of finding the next class (see PqNextClass (5.6.4)). If the tails operation is not complete
then the relations may be evaluated incorrectly.

Note: For those familiar with the pq program, PqCollectDefiningRelations performs menu
item 9 of the Advanced p-Quotient menu.

5.7.10 PqCollectWordInDefiningGenerators

. PqCollectWordInDefiningGenerators(i, word) (function)

. PqCollectWordInDefiningGenerators(word) (function)

for the i th or default interactive ANUPQ process, take a user-defined word word in the defining
generators of the original presentation of the fp or pc group of the process. Each generator is mapped
into the current pc presentation, and the resulting word is collected with respect to the current pc
presentation. The result of the collection is returned as a list of generator number, exponent pairs.

The word argument may be input in either of the two ways described for PqCollect
(see PqCollect (5.7.1)).

Note: For those familiar with the pq program, PqCollectDefiningGenerators performs menu
item 23 of the Advanced p-Quotient menu.

ANUPQ 54

5.7.11 PqCommutatorDefiningGenerators

. PqCommutatorDefiningGenerators(i, words, pow) (function)

. PqCommutatorDefiningGenerators(words, pow) (function)

for the i th or default interactive ANUPQ process, take a list words of user-defined words in the
defining generators of the original presentation of the fp or pc group of the process, and an integer
power pow . Each generator is mapped into the current pc presentation. The list words is interpreted
as a left-normed commutator which is then raised to pow and collected with respect to the current pc
presentation. The result of the collection is returned as a list of generator number, exponent pairs.

Note For those familiar with the pq program, PqCommutatorDefiningGenerators performs
menu item 24 of the Advanced p-Quotient menu.

5.7.12 PqDoExponentChecks

. PqDoExponentChecks(i: [Bounds := list]) (function)

. PqDoExponentChecks(: [Bounds := list]) (function)

for the i th or default interactive ANUPQ process, direct the pq program to do exponent checks
for weights (inclusively) between the bounds of Bounds or for all weights if Bounds is not given. The
value list of Bounds (assuming the interactive process is numbered i) should be a list of two integers
low , high satisfying 1 ≤ low ≤ high ≤ PqPClass(i) (see PqPClass (5.5.4)). If no exponent law
has been specified, no exponent checks are performed.

Note: For those familiar with the pq program, PqDoExponentChecks performs menu item 10 of
the Advanced p-Quotient menu.

5.7.13 PqEliminateRedundantGenerators

. PqEliminateRedundantGenerators(i) (function)

. PqEliminateRedundantGenerators() (function)

for the i th or default interactive ANUPQ process, direct the pq program to eliminate redundant
generators of the current p-quotient.

Note: For those familiar with the pq program, PqEliminateRedundantGenerators performs
menu item 11 of the Advanced p-Quotient menu.

5.7.14 PqRevertToPreviousClass

. PqRevertToPreviousClass(i) (function)

. PqRevertToPreviousClass() (function)

for the i th or default interactive ANUPQ process, direct the pq program to abandon the current
class and revert to the previous class.

Note: For those familiar with the pq program, PqRevertToPreviousClass performs menu item
12 of the Advanced p-Quotient menu.

ANUPQ 55

5.7.15 PqSetMaximalOccurrences

. PqSetMaximalOccurrences(i, noccur) (function)

. PqSetMaximalOccurrences(noccur) (function)

for the i th or default interactive ANUPQ process, direct the pq program to set maximal occur-
rences of the weight 1 generators in the definitions of pcp generators of the group of the process. This
can be used to avoid the definition of generators of which one knows for theoretical reasons that they
would be eliminated later on.

The argument noccur must be a list of non-negative integers of length the number of weight 1
generators (i.e. the rank of the class 1 p-quotient of the group of the process). An entry of 0 for a
particular generator indicates that there is no limit on the number of occurrences for the generator.

Note: For those familiar with the pq program, PqSetMaximalOccurrences performs menu item
13 of the Advanced p-Quotient menu.

5.7.16 PqSetMetabelian

. PqSetMetabelian(i) (function)

. PqSetMetabelian() (function)

for the i th or default interactive ANUPQ process, direct the pq program to enforce metabelian-
ness.

Note: For those familiar with the pq program, PqSetMetabelian performs menu item 14 of the
Advanced p-Quotient menu.

5.7.17 PqDoConsistencyCheck

. PqDoConsistencyCheck(i, c, b, a) (function)

. PqDoConsistencyCheck(c, b, a) (function)

. PqJacobi(i, c, b, a) (function)

. PqJacobi(c, b, a) (function)

for the i th or default interactive ANUPQ process, direct the pq program to do the consistency
check for the pc generators with indices c , b , a which should be non-increasing positive integers,
i.e. c ≥ b ≥ a .

There are 3 types of consistency checks:

(an)a = a(an) (Type 1)
(bn)a = b(n−1)(ba),b(an) = (ba)a(n−1) (Type 2)
c(ba) = (cb)a (Type 3)

The reason some people talk about Jacobi relations instead of consistency checks becomes clear when
one looks at the consistency check of type 3:

c(ba) = ac[c,a]b[b,a] = acb[c,a][c,a,b][b,a] = . . .
(cb)a = bc[c,b]a = ab[b,a]c[c,a][c,b][c,b,a]

= abc[b,a][b,a,c][c,a][c,b][c,b,a] = . . .

ANUPQ 56

Each collection would normally carry on further. But one can see already that no other commutators
of weight 3 will occur. After all terms of weight one and weight two have been moved to the left we
end up with:

abc[b,a][c,a][c,b][c,a,b] . . .
= abc[b,a][c,a][c,b][c,b,a][b,a,c] . . .

Modulo terms of weight 4 this is equivalent to

[c,a,b][b,c,a][a,b,c] = 1

which is the Jacobi identity.
See also PqDoConsistencyChecks (PqDoConsistencyChecks (5.7.8)).
Note: For those familiar with the pq program, PqDoConsistencyCheck and PqJacobi perform

menu item 15 of the Advanced p-Quotient menu.

5.7.18 PqCompact

. PqCompact(i) (function)

. PqCompact() (function)

for the i th or default interactive ANUPQ process, direct the pq program to do a compaction of its
work space. This function is safe to perform only at certain points in time.

Note: For those familiar with the pq program, PqCompact performs menu item 16 of the Advanced
p-Quotient menu.

5.7.19 PqEchelonise

. PqEchelonise(i) (function)

. PqEchelonise() (function)

for the i th or default interactive ANUPQ process, direct the pq program to echelonise the word
most recently collected by PqCollect or PqCommutator against the relations of the current pc pre-
sentation, and return the number of the generator made redundant or fail if no generator was made
redundant. A call to PqCollect (see PqCollect (5.7.1)) or PqCommutator (see PqCommutator
(5.7.3)) needs to be performed prior to using this command.

Note: For those familiar with the pq program, PqEchelonise performs menu item 17 of the
Advanced p-Quotient menu.

5.7.20 PqSupplyAutomorphisms

. PqSupplyAutomorphisms(i, mlist) (function)

. PqSupplyAutomorphisms(mlist) (function)

for the i th or default interactive ANUPQ process, supply the automorphism data provided by the
list mlist of matrices with non-negative integer coefficients. Each matrix in mlist describes one
automorphism in the following way.

• The rows of each matrix correspond to the pc generators of weight one.

ANUPQ 57

• Each row is the exponent vector of the image of the corresponding weight one generator under
the respective automorphism.

Note: For those familiar with the pq program, PqSupplyAutomorphisms uses menu item 18 of the
Advanced p-Quotient menu.

5.7.21 PqExtendAutomorphisms

. PqExtendAutomorphisms(i) (function)

. PqExtendAutomorphisms() (function)

for the i th or default interactive ANUPQ process, direct the pq program to extend automorphisms
of the p-quotient of the previous class to the p-quotient of the present class.

Note: For those familiar with the pq program, PqExtendAutomorphisms uses menu item 18 of
the Advanced p-Quotient menu.

5.7.22 PqApplyAutomorphisms

. PqApplyAutomorphisms(i, qfac) (function)

. PqApplyAutomorphisms(qfac) (function)

for the i th or default interactive ANUPQ process, direct the pq program to apply automorphisms;
qfac is the queue factor e.g. 15.

Note: For those familiar with the pq program, PqCloseRelations performs menu item 19 of the
Advanced p-Quotient menu.

5.7.23 PqDisplayStructure

. PqDisplayStructure(i: [Bounds := list]) (function)

. PqDisplayStructure(: [Bounds := list]) (function)

for the i th or default interactive ANUPQ process, direct the pq program to display the structure
for the pcp generators numbered (inclusively) between the bounds of Bounds or for all generators if
Bounds is not given. The value list of Bounds (assuming the interactive process is numbered i)
should be a list of two integers low , high satisfying 1 ≤ low ≤ high ≤ PqNrPcGenerators(i)
(see PqNrPcGenerators (5.5.1)). PqDisplayStructure also accepts the option OutputLevel (see
6.2).

Explanation of output
New generators are defined as commutators of previous generators and generators of class 1 or

as p-th powers of generators that have themselves been defined as p-th powers. A generator is never
defined as p-th power of a commutator.

Therefore, there are two cases: all the numbers on the righthand side are either the same or they
differ. Below, gi refers to the i th defining generator.

• If the righthand side numbers are all the same, then the generator is a p-th power (of a p-th
power of a p-th power, etc.). The number of repeated digits say how often a p-th power has to
be taken.

ANUPQ 58

In the following example, the generator number 31 is the eleventh power of generator 17 which
in turn is an eleventh power and so on:

\begintt #I 31 is defined on 17^11 = 1 1 1 1 1 \endtt So generator 31 is obtained by taking the
eleventh power of generator 1 five times.

• If the numbers are not all the same, the generator is defined by a commutator. If the first two
generator numbers differ, the generator is defined as a left-normed commutator of the weight
one generators, e.g.

\begintt #I 19 is defined on [11, 1] = 2 1 1 1 1 \endtt Here, generator 19 is defined as the
commutator of generator 11 and generator 1 which is the same as the left-normed commutator
[x2, x1, x1, x1, x1]. One can check this by tracing back the definition of generator 11
until one gets to a generator of class 1.

• If the first two generator numbers are identical, then the left most component of the left-normed
commutator is a p-th power, e.g.

\begintt #I 25 is defined on [14, 1] = 1 1 2 1 1 \endtt

In this example, generator 25 is defined as commutator of generator 14 and generator 1. The
left-normed commutator is

[(x111)11,x2,x1,x1]

Again, this can be verified by tracing back the definitions.

Note: For those familiar with the pq program, PqDisplayStructure performs menu item 20 of the
Advanced p-Quotient menu.

5.7.24 PqDisplayAutomorphisms

. PqDisplayAutomorphisms(i: [Bounds := list]) (function)

. PqDisplayAutomorphisms(: [Bounds := list]) (function)

for the i th or default interactive ANUPQ process, direct the pq program to display the auto-
morphism actions on the pcp generators numbered (inclusively) between the bounds of Bounds or
for all generators if Bounds is not given. The value list of Bounds (assuming the interactive
process is numbered i) should be a list of two integers low , high satisfying 1 ≤ low ≤ high ≤
PqNrPcGenerators(i) (see PqNrPcGenerators (5.5.1)). PqDisplayStructure also accepts the
option OutputLevel (see 6.2).

Note: For those familiar with the pq program, PqDisplayAutomorphisms performs menu item
21 of the Advanced p-Quotient menu.

5.7.25 PqWritePcPresentation

. PqWritePcPresentation(i, filename) (function)

. PqWritePcPresentation(filename) (function)

for the i th or default interactive ANUPQ process, direct the pq program to write a pc presentation
of a previously-computed quotient of the group of that process, to the file with name filename .
Here the group of a process is the one given as first argument when PqStart was called to initiate

ANUPQ 59

that process (for process i the group is stored as ANUPQData.io[i].group). If the first character
of the string filename is not /, filename is assumed to be the path of a writable file relative to
the directory in which GAP was started. If a pc presentation has not been previously computed
by the pq program, then pq is called to compute it first, effectively invoking PqPcPresentation
(see PqPcPresentation (5.6.1)).

Note: For those familiar with the pq program, PqPcWritePresentation performs menu item 25
of the Advanced p-Quotient menu.

5.8 Commands from the Standard Presentation menu

5.8.1 PqSPComputePcpAndPCover

. PqSPComputePcpAndPCover(i: options) (function)

. PqSPComputePcpAndPCover(: options) (function)

for the i th or default interactive ANUPQ process, directs the pq program to compute for the
group of that process a pc presentation up to the p-quotient of maximum class or the value of
the option ClassBound and the p-cover of that quotient, and sets up tabular information required
for computation of a standard presentation. Here the group of a process is the one given as first
argument when PqStart was called to initiate that process (for process i the group is stored as
ANUPQData.io[i].group).

The possible options are Prime, ClassBound, Relators, Exponent, Metabelian and
OutputLevel (see Chapter ‘ANUPQ Options’ for detailed descriptions of these options). The op-
tion Prime is normally determined via PrimePGroup, and so is not required unless the group doesn’t
know it’s a p-group and HasPrimePGroup returns false.

Note: For those familiar with the pq program, PqSPComputePcpAndPCover performs option 1 of
the Standard Presentation menu.

5.8.2 PqSPStandardPresentation

. PqSPStandardPresentation(i[, mlist]: [options]) (function)

. PqSPStandardPresentation([mlist]: [options]) (function)

for the i th or default interactive ANUPQ process, inputs data given by options to compute a
standard presentation for the group of that process. If argument mlist is given it is assumed to be the
automorphism group data required. Otherwise it is assumed that a call to either Pq (see Pq (5.3.1)) or
PqEpimorphism (see PqEpimorphism (5.3.2)) has generated a p-quotient and that GAP can compute
its automorphism group from which the necessary automorphism group data can be derived. The
group of the process is the one given as first argument when PqStart was called to initiate the process
(for process i the group is stored as ANUPQData.io[i].group and the p-quotient if existent is stored
as ANUPQData.io[i].pQuotient). If mlist is not given and a p-quotient of the group has not been
previously computed a class 1 p-quotient is computed.

PqSPStandardPresentation accepts three options, all optional:

• ClassBound := n

• PcgsAutomorphisms

ANUPQ 60

• StandardPresentationFile := filename

If ClassBound is omitted it defaults to 63.
Detailed descriptions of the above options may be found in Chapter ‘ANUPQ Options’.
Note: For those familiar with the pq program, PqSPPcPresentation performs menu item 2 of

the Standard Presentation menu.

5.8.3 PqSPSavePresentation

. PqSPSavePresentation(i, filename) (function)

. PqSPSavePresentation(filename) (function)

for the i th or default interactive ANUPQ process, directs the pq program to save the standard
presentation previously computed for the group of that process to the file with name filename , where
the group of a process is the one given as first argument when PqStart was called to initiate that
process. If the first character of the string filename is not /, filename is assumed to be the path of
a writable file relative to the directory in which GAP was started.

Note: For those familiar with the pq program, PqSPSavePresentation performs menu item 3 of
the Standard Presentation menu.

5.8.4 PqSPCompareTwoFilePresentations

. PqSPCompareTwoFilePresentations(i, f1, f2) (function)

. PqSPCompareTwoFilePresentations(f1, f2) (function)

for the i th or default interactive ANUPQ process, direct the pq program to compare the presen-
tations in the files with names f1 and f2 and returns true if they are identical and false otherwise.
For each of the strings f1 and f2 , if the first character is not a / then it is assumed to be the path of a
readable file relative to the directory in which GAP was started.

Notes
The presentations in files f1 and f2 must have been generated by the pq program but they do

not need to be standard presentations. If If the presentations in files f1 and f2 have been generated
by PqSPStandardPresentation (see PqSPStandardPresentation (5.8.2)) then a false response
from PqSPCompareTwoFilePresentations says the groups defined by those presentations are not
isomorphic.

For those familiar with the pq program, PqSPCompareTwoFilePresentations performs menu
item 6 of the Standard Presentation menu.

5.8.5 PqSPIsomorphism

. PqSPIsomorphism(i) (function)

. PqSPIsomorphism() (function)

for the i th or default interactive ANUPQ process, direct the pq program to compute the
isomorphism mapping from the p-group of the process to its standard presentation. This func-
tion provides a description only; for a GAP object, use EpimorphismStandardPresentation
(see EpimorphismStandardPresentation (5.3.5)).

ANUPQ 61

Note: For those familiar with the pq program, PqSPIsomorphism performs menu item 8 of the
Standard Presentation menu.

5.9 Commands from the Main p-Group Generation menu

Note that the p-group generation commands can only be applied once the pq program has produced a
pc presentation of some quotient group of the “group of the process”.

5.9.1 PqPGSupplyAutomorphisms

. PqPGSupplyAutomorphisms(i[, mlist]: options) (function)

. PqPGSupplyAutomorphisms([mlist]: options) (function)

for the i th or default interactive ANUPQ process, supply the pq program with the automor-
phism group data needed for the current quotient of the group of that process (for process i
the group is stored as ANUPQData.io[i].group). For a description of the format of mlist
see PqSupplyAutomorphisms (5.7.20). The options possible are NumberOfSolubleAutomorphisms
and RelativeOrders. (Detailed descriptions of these options may be found in Chapter ‘ANUPQ Op-
tions’.)

If mlist is omitted, the automorphism data is determined from the group of the process which
must have been a p-group in pc presentation.

Note: For those familiar with the pq program, PqPGSupplyAutomorphisms performs menu item
1 of the main p-Group Generation menu.

5.9.2 PqPGExtendAutomorphisms

. PqPGExtendAutomorphisms(i) (function)

. PqPGExtendAutomorphisms() (function)

for the i th or default interactive ANUPQ process, direct the pq program to compute the extensions
of the automorphisms of the p-quotient of the previous class to the p-quotient of the current class. You
may wish to set the InfoLevel of InfoANUPQ to 2 (or more) in order to see the output from the pq
program (see InfoANUPQ (3.3.1)).

Note: For those familiar with the pq program, PqPGExtendAutomorphisms performs menu item
2 of the main or advanced p-Group Generation menu.

5.9.3 PqPGConstructDescendants

. PqPGConstructDescendants(i: options) (function)

. PqPGConstructDescendants(: options) (function)

for the i th or default interactive ANUPQ process, direct the pq program to construct de-
scendants prescribed by options , and return the number of descendants constructed (compare
function PqDescendants (4.4.1) which returns the list of descendants). The options possible are
ClassBound, OrderBound, StepSize, PcgsAutomorphisms, RankInitialSegmentSubgroups,
SpaceEfficient, CapableDescendants, AllDescendants, Exponent, Metabelian,

ANUPQ 62

BasicAlgorithm, CustomiseOutput. (Detailed descriptions of these options may be found
in Chapter ‘ANUPQ Options’.)

PqPGConstructDescendants requires that the pq program has previously computed a pc presen-
tation and a p-cover for a p-quotient of some class of the group of the process.

Note: For those familiar with the pq program, PqPGConstructDescendants performs menu item
5 of the main p-Group Generation menu.

5.9.4 PqPGSetDescendantToPcp (with class)

. PqPGSetDescendantToPcp(i, cls, n) (function)

. PqPGSetDescendantToPcp(cls, n) (function)

. PqPGSetDescendantToPcp(i: [Filename := name]) (function)

. PqPGSetDescendantToPcp(: [Filename := name]) (function)

. PqPGRestoreDescendantFromFile(i, cls, n) (function)

. PqPGRestoreDescendantFromFile(cls, n) (function)

. PqPGRestoreDescendantFromFile(i: [Filename := name]) (function)

. PqPGRestoreDescendantFromFile(: [Filename := name]) (function)

for the i th or default interactive ANUPQ process, direct the pq program to restore group n
of class cls from a temporary file, where cls and n are positive integers, or the group stored in
name . PqPGSetDescendantToPcp and PqPGRestoreDescendantFromFile are synonyms; they
make sense only after a prior call to construct descendants by say PqPGConstructDescendants
(see PqPGConstructDescendants (5.9.3)) or the interactive PqDescendants (see PqDescendants
(5.3.6)). In the Filename option forms, the option defaults to the last filename in which a presentation
was stored by the pq program.

Notes
Since the PqPGSetDescendantToPcp and PqPGRestoreDescendantFromFile are intended to

be used in calculation of further descendants the pq program computes the p-cover of the restored
descendant. Hence, PqCurrentGroup used immediately after one of these commands returns the
p-cover of the restored descendant rather than the descendant itself.

For those familiar with the pq program, PqPGSetDescendantToPcp and
PqPGRestoreDescendantFromFile perform menu item 3 of the main or advanced p-Group
Generation menu.

5.10 Commands from the Advanced p-Group Generation menu

The functions below perform the component algorithms of PqPGConstructDescendants
(see PqPGConstructDescendants (5.9.3)). You can get some idea of their usage by
trying PqExample("Nott-APG-Rel-i");. You can get some idea of the breakdown of
PqPGConstructDescendants into these functions by comparing the previous output with
PqExample("Nott-PG-Rel-i");.

These functions are intended for use only by “experts”; please contact the authors of the package
if you genuinely have a need for them and need any amplified descriptions.

ANUPQ 63

5.10.1 PqAPGDegree

. PqAPGDegree(i, step, rank: [Exponent := n]) (function)

. PqAPGDegree(step, rank: [Exponent := n]) (function)

for the i th or default interactive ANUPQ process, direct the pq program to invoke menu item 6
of the Advanced p-Group Generation menu. Here the step-size step and the rank rank are positive
integers and are the arguments required by the pq program. See 6.2 for the one recognised option
Exponent.

5.10.2 PqAPGPermutations

. PqAPGPermutations(i: options) (function)

. PqAPGPermutations(: options) (function)

for the i th or default interactive ANUPQ process, direct the pq program to perform menu
item 7 of the Advanced p-Group Generation menu. Here the options options recognised are
PcgsAutomorphisms, SpaceEfficient, PrintAutomorphisms and PrintPermutations (see
Chapter ‘ANUPQ Options’ for details).

5.10.3 PqAPGOrbits

. PqAPGOrbits(i: options) (function)

. PqAPGOrbits(: options) (function)

for the i th or default interactive ANUPQ process, direct the pq to perform menu item 8 of the
Advanced p-Group Generation menu.

Here the options options recognised are PcgsAutomorphisms, SpaceEfficient and
CustomiseOutput (see Chapter ‘ANUPQ Options’ for details). For the CustomiseOutput option
only the setting of the orbit is recognised (all other fields if set are ignored).

5.10.4 PqAPGOrbitRepresentatives

. PqAPGOrbitRepresentatives(i: options) (function)

. PqAPGOrbitRepresentatives(: options) (function)

for the i th or default interactive ANUPQ process, direct the pq to perform item 9 of the Advanced
p-Group Generation menu.

The options options may be any selection of the following: PcgsAutomorphisms,
SpaceEfficient, Exponent, Metabelian, CapableDescendants (or AllDescendants),
CustomiseOutput (where only the group and autgroup fields are recognised) and Filename (see
Chapter ‘ANUPQ Options’ for details). If Filename is omitted the reduced p-cover is written to the
file "redPCover" in the temporary directory whose name is stored in ANUPQData.tmpdir.

5.10.5 PqAPGSingleStage

. PqAPGSingleStage(i: options) (function)

. PqAPGSingleStage(: options) (function)

ANUPQ 64

for the i th or default interactive ANUPQ process, direct the pq to perform option 5 of the Ad-
vanced p-Group Generation menu.

The possible options are StepSize, PcgsAutomorphisms, RankInitialSegmentSubgroups,
SpaceEfficient, CapableDescendants, AllDescendants, Exponent, Metabelian,
BasicAlgorithm and CustomiseOutput. (Detailed descriptions of these options may be
found in Chapter ‘ANUPQ Options’.)

5.11 Primitive Interactive ANUPQ Process Read/Write Functions

For those familiar with using the pq program as a standalone we provide primitive read/write tools to
communicate directly with an interactive ANUPQ process, started via PqStart. For the most part, it
is up to the user to translate the output strings from pq program into a form useful in GAP.

5.11.1 PqRead

. PqRead(i) (function)

. PqRead() (function)

read a complete line of ANUPQ output, from the i th or default interactive ANUPQ process, if
there is output to be read and returns fail otherwise. When successful, the line is returned as a string
complete with trailing newline, colon, or question-mark character. Please note that it is possible to
be “too quick” (i.e. the return can be fail purely because the output from ANUPQ is not there yet),
but if PqRead finds any output at all, it waits for a complete line. PqRead also writes the line read via
Info at InfoANUPQ level 2. It doesn’t try to distinguish banner and menu output from other output of
the pq program.

5.11.2 PqReadAll

. PqReadAll(i) (function)

. PqReadAll() (function)

read and return as many complete lines of ANUPQ output, from the i th or default interactive
ANUPQ process, as there are to be read, at the time of the call, as a list of strings with any trailing
newlines removed and returns the empty list otherwise. PqReadAll also writes each line read via
Info at InfoANUPQ level 2. It doesn’t try to distinguish banner and menu output from other output
of the pq program. Whenever PqReadAll finds only a partial line, it waits for the complete line, thus
increasing the probability that it has captured all the output to be had from ANUPQ.

5.11.3 PqReadUntil

. PqReadUntil(i, IsMyLine) (function)

. PqReadUntil(IsMyLine) (function)

. PqReadUntil(i, IsMyLine, Modify) (function)

. PqReadUntil(IsMyLine, Modify) (function)

ANUPQ 65

read complete lines of ANUPQ output, from the i th or default interactive ANUPQ process,
“chomps” them (i.e. removes any trailing newline character), emits them to Info at InfoANUPQ level
2 (without trying to distinguish banner and menu output from other output of the pq program), and
applies the function Modify (where Modify is just the identity map/function for the first two forms)
until a “chomped” line line for which IsMyLine(Modify(line)) is true. PqReadUntil returns
the list of Modify -ed “chomped” lines read.

Notes: When provided by the user, Modify should be a function that accepts a single string
argument.

IsMyLine should be a function that is able to accept the output of Modify (or take a single string
argument when Modify is not provided) and should return a boolean.

If IsMyLine(Modify(line)) is never true, PqReadUntil will wait indefinitely.

5.11.4 PqWrite

. PqWrite(i, string) (function)

. PqWrite(string) (function)

write string to the i th or default interactive ANUPQ process; string must be in exactly the
form the ANUPQ standalone expects. The command is echoed via Info at InfoANUPQ level 3 (with
a “ToPQ> ” prompt); i.e. do SetInfoLevel(InfoANUPQ, 3); to see what is transmitted to the pq
program. PqWrite returns true if successful in writing to the stream of the interactive ANUPQ
process, and fail otherwise.

Note: If PqWrite returns fail it means that the ANUPQ process has died.

Chapter 6

ANUPQ Options

6.1 Overview

In this chapter we describe in detail all the options used by functions of the ANUPQ package. Note
that by “options” we mean GAP options that are passed to functions after the arguments and sep-
arated from the arguments by a colon as described in Chapter Reference: Function Calls in the
Reference Manual. The user is strongly advised to read Section ‘Hints and Warnings regarding the
use of Options’.

6.1.1 AllANUPQoptions

. AllANUPQoptions() (function)

lists all the GAP options defined for functions of the ANUPQ package:
Example

gap> AllANUPQoptions();
["AllDescendants", "BasicAlgorithm", "Bounds", "CapableDescendants",

"ClassBound", "CustomiseOutput", "Exponent", "Filename", "GroupName",
"Identities", "Metabelian", "NumberOfSolubleAutomorphisms", "OrderBound",
"OutputLevel", "PcgsAutomorphisms", "PqWorkspace", "Prime",
"PrintAutomorphisms", "PrintPermutations", "QueueFactor",
"RankInitialSegmentSubgroups", "RedoPcp", "RelativeOrders", "Relators",
"SetupFile", "SpaceEfficient", "StandardPresentationFile", "StepSize",
"SubList", "TreeDepth", "pQuotient"]

The following global variable gives a partial breakdown of where the above options are used.

6.1.2 ANUPQoptions

. ANUPQoptions (global variable)

is a record of lists of names of admissible ANUPQ options, such that each field is either the name
of a “key” ANUPQ function or other (for a miscellaneous list of functions) and the corresponding
value is the list of option names that are admissible for the function (or miscellaneous list of functions).

66

ANUPQ 67

Also, from within a GAP session, you may use GAP’s help browser (see Chapter Reference: The
Help System in the GAP Reference Manual); to find out about any particular ANUPQ option, simply
type: “?option option”, where option is one of the options listed above without any quotes, e.g.

Example
gap> ?option Prime

will display the sections in this manual that describe the Prime option. In fact the first 4 are for the
functions that have Prime as an option and the last actually describes the option. So follow up by
choosing

Example
gap> ?5

This is also the pattern for other options (the last section of the list always describes the option; the
other sections are the functions with which the option may be used).

In the section following we describe in detail all ANUPQ options. To continue onto the next
section on-line using GAP’s help browser, type:

Example
gap> ?>

6.2 Detailed descriptions of ANUPQ Options

Prime := p
Specifies that the p-quotient for the prime p should be computed.

ClassBound := n
Specifies that the p-quotient to be computed has lower exponent-p class at most n . If this
option is omitted a default of 63 (which is the maximum possible for the pq program) is taken,
except for PqDescendants (see PqDescendants (4.4.1)) and in a special case of PqPCover
(see PqPCover (4.1.3)). Let F be the argument (or start group of the process in the interactive
case) for the function; then for PqDescendants the default is PClassPGroup(F) + 1, and for
the special case of PqPCover the default is PClassPGroup(F).

pQuotient := Q
This option is only available for the standard presentation functions. It specifies that a p-quotient
of the group argument of the function or group of the process is the pc p -group Q , where Q is
of class less than the provided (or default) value of ClassBound. If pQuotient is provided,
then the option Prime if also provided, is ignored; the prime p is discovered by computing
PrimePGroup(Q).

Exponent := n
Specifies that the p-quotient to be computed has exponent n . For an interactive process,
Exponent defaults to a previously supplied value for the process. Otherwise (and non-
interactively), the default is 0, which means that no exponent law is enforced.

Relators := rels
Specifies that the relators sent to the pq program should be rels instead of the relators of the
argument group F (or start group in the interactive case) of the calling function; rels should be
a list of strings in the string representations of the generators of F , and F must be an fp group

ANUPQ 68

(even if the calling function accepts a pc group). This option provides a way of giving relators
to the pq program, without having them pre-expanded by GAP, which can sometimes effect a
performance loss of the order of 100 (see Section ‘The Relators Option’).

Notes

1. The pq program does not use / to indicate multiplication by an inverse and uses square
brackets to represent (left normed) commutators. Also, even though the pq program ac-
cepts relations, all elements of rels must be in relator form, i.e. a relation of form w1 =
w2 must be written as w1*(w2)^-1 and then put in a pair of double-quotes to make it a
string. See the example below.

2. To ensure there are no syntax errors in rels , each relator is parsed for validity via
PqParseWord (see PqParseWord (3.4.3)). If they are ok, a message to say so is Info-
ed at InfoANUPQ level 2.

Metabelian
Specifies that the largest metabelian p-quotient subject to any other conditions specified by other
options be constructed. By default this restriction is not enforced.

GroupName := name
Specifies that the pq program should refer to the group by the name name (a string). If
GroupName is not set and the group has been assigned a name via SetName (see Reference:
Name) it is set as the name the pq program should use. Otherwise, the “generic” name "[grp]"
is set as a default.

Identities := funcs
Specifies that the pc presentation should satisfy the laws defined by each function in the list
funcs . This option may be called by Pq, PqEpimorphism, or PqPCover (see Pq (4.1.1)). Each
function in the list funcs must return a word in its arguments (there may be any number of
arguments). Let identity be one such function in funcs . Then as each lower exponent p -class
quotient is formed, instances identity(w1 , . . . ,wn) are added as relators to the pc presentation,
where w1 , . . . ,wn are words in the pc generators of the quotient. At each class the class and
number of pc generators is Info-ed at InfoANUPQ level 1, the number of instances is Info-ed
at InfoANUPQ level 2, and the instances that are evaluated are Info-ed at InfoANUPQ level 3. As
usual timing information is Info-ed at InfoANUPQ level 2; and details of the processing of each
instance from the pq program (which is often quite voluminous) is Info-ed at InfoANUPQ level
3. Try the examples "B2-4-Id" and "11gp-3-Engel-Id" which demonstrate the usage of the
Identities option; these are run using PqExample (see PqExample (3.4.4)). Take note of Note
1. below in relation to the example "B2-4-Id"; the companion example "B2-4" generates the
same group using the Exponent option. These examples are discussed at length in Section ‘The
Identities Option and PqEvaluateIdentities Function’.

Notes

1. Setting the InfoANUPQ level to 3 or more when setting the Identities option may slow
down the computation considerably, by overloading GAP with io operations.

2. The Identities option is implemented at the GAP level. An identity that is just an ex-
ponent law should be specified using the Exponent option (see option Exponent (6.2)),
which is implemented at the C level and is highly optimised and so is much more efficient.

ANUPQ 69

3. The number of instances of each identity tends to grow combinatorially with the class. So
care should be exercised in using the Identities option, by including other restrictions,
e.g. by using the ClassBound option (see option ClassBound (6.2)).

OutputLevel := n
Specifies the level of “verbosity” of the information output by the ANU pq program when
computing a pc presentation; n must be an integer in the range 0 to 3. OutputLevel := 0
displays at most one line of output and is the default; OutputLevel := 1 displays (usually)
slightly more output and OutputLevels of 2 and 3 are two levels of verbose output. To see these
messages from the pq program, the InfoANUPQ level must be set to at least 1 (see InfoANUPQ
(3.3.1)). See Section ‘Hints and Warnings regarding the use of Options’ for an example of how
OutputLevel can be used as a troubleshooting tool.

RedoPcp
Specifies that the current pc presentation (for an interactive process) stored by the pq program
be scrapped and clears the current values stored for the options Prime, ClassBound, Exponent
and Metabelian and also clears the pQuotient, pQepi and pCover fields of the data record of
the process.

SetupFile := filename
Non-interactively, this option directs that pq should not be called and that an input file with
name filename (a string), containing the commands necessary for the ANU pq standalone, be
constructed. The commands written to filename are also Info-ed behind a “ToPQ> ” prompt
at InfoANUPQ level 4 (see InfoANUPQ (3.3.1)). Except in the case following, the calling function
returns true. If the calling function is the non-interactive version of one of Pq, PqPCover
or PqEpimorphism and the group provided as argument is trivial given with an empty set of
generators, then no setup file is written and fail is returned (the pq program cannot do anything
useful with such a group). Interactively, SetupFile is ignored.

Note: Since commands emitted to the pq program may depend on knowing what the “current
state” is, to form a setup file some “close enough guesses” may sometimes be necessary; when
this occurs a warning is Info-ed at InfoANUPQ or InfoWarning level 1. To determine whether
the “close enough guesses” give an accurate setup file, it is necessary to run the command
without the SetupFile option, after either setting the InfoANUPQ level to at least 4 (the setup
file script can then be compared with the “ToPQ> ” commands that are Info-ed) or setting a pq
command log file by using ToPQLog (see ToPQLog (3.4.7)).

PqWorkspace := workspace
Non-interactively, this option sets the memory used by the pq program. It sets the maximum
number of integer-sized elements to allocate in its main storage array. By default, the pq pro-
gram sets this figure to 10000000. Interactively, PqWorkspace is ignored; the memory used in
this case may be set by giving PqStart a second argument (see PqStart (5.1.1)).

PcgsAutomorphisms

PcgsAutomorphisms := false
Let G be the group associated with the calling function (or associated interactive process). Pass-
ing the option PcgsAutomorphisms without a value (or equivalently setting it to true), speci-
fies that a polycyclic generating sequence for the automorphism group (which must be soluble)

ANUPQ 70

of G , be computed and passed to the pq program. This increases the efficiency of the compu-
tation; it also prevents the pq from calling GAP for orbit-stabilizer calculations. By default,
PcgsAutomorphisms is set to the value returned by IsSolvable(AutomorphismGroup(G
)), and uses the package AutPGrp to compute AutomorphismGroup(G) if it is installed.
This flag is set to true or false in the background according to the above criterion by the
function PqDescendants (see PqDescendants (4.4.1) and PqDescendants (5.3.6)).

Note: If PcgsAutomorphisms is used when the automorphism group of G is insoluble, an error
message occurs.

OrderBound := n
Specifies that only descendants of size at most pn , where n is a non-negative integer, be gener-
ated. Note that you cannot set both OrderBound and StepSize.

StepSize := n

StepSize := list
For a positive integer n , StepSize specifies that only those immediate descendants which are a
factor pn bigger than their parent group be generated.

For a list list of positive integers such that the sum of the length of list and the exponent-p
class of G is equal to the class bound defined by the option ClassBound, StepSize specifies
that the integers of list are the step sizes for each additional class.

RankInitialSegmentSubgroups := n
Sets the rank of the initial segment subgroup chosen to be n . By default, this has value 0.

SpaceEfficient
Specifies that the pq program performs certain calculations of p-group generation more slowly
but with greater space efficiency. This flag is frequently necessary for groups of large Frat-
tini quotient rank. The space saving occurs because only one permutation is stored at any one
time. This option is only available if the PcgsAutomorphisms flag is set to true (see option
PcgsAutomorphisms (6.2)). For an interactive process, SpaceEfficient defaults to a previ-
ously supplied value for the process. Otherwise (and non-interactively), SpaceEfficient is by
default false.

CapableDescendants
By default, all (i.e. capable and terminal) descendants are computed. If this flag is set, only
capable descendants are computed. Setting this option is equivalent to setting AllDescendants
:= false (see option AllDescendants (6.2)), except if both CapableDescendants and
AllDescendants are passed, AllDescendants is essentially ignored.

AllDescendants := false
By default, all descendants are constructed. If this flag is set to false, only capable descendants
are computed. Passing AllDescendants without a value (which is equivalent to setting it to
true) is superfluous. This option is provided only for backward compatibility with the GAP 3
version of the ANUPQ package, where by default AllDescendants was set to false (rather
than true). It is preferable to use CapableDescendants (see option CapableDescendants
(6.2)).

ANUPQ 71

TreeDepth := class
Specifies that the descendants tree developed by PqDescendantsTreeCoclassOne
(see PqDescendantsTreeCoclassOne (A.4.1)) should be extended to class class , where
class is a positive integer.

SubList := sub
Suppose that L is the list of descendants generated, then for a list sub of integers this op-
tion causes PqDescendants to return Sublist(L, sub). If an integer n is supplied,
PqDescendants returns L[n].

NumberOfSolubleAutomorphisms := n
Specifies that the number of soluble automorphisms of the automorphism group supplied by
PqPGSupplyAutomorphisms (see PqPGSupplyAutomorphisms (5.9.1)) in a p-group genera-
tion calculation is n . By default, n is taken to be 0; n must be a non-negative integer. If n ≥ 0
then a value for the option RelativeOrders (see 6.2) must also be supplied.

RelativeOrders := list
Specifies the relative orders of each soluble automorphism of the automorphism group supplied
by PqPGSupplyAutomorphisms (see PqPGSupplyAutomorphisms (5.9.1)) in a p-group gen-
eration calculation. The list list must consist of n positive integers, where n is the value of
the option NumberOfSolubleAutomorphisms (see 6.2). By default list is empty.

BasicAlgorithm
Specifies that an algorithm that the pq program calls its “default” algorithm be used for p-group
generation. By default this algorithm is not used. If this option is supplied the settings of
options RankInitialSegmentSubgroups, AllDescendants, Exponent and Metabelian are
ignored.

CustomiseOutput := rec
Specifies that fine tuning of the output is desired. The record rec should have any subset (or
all) of the the following fields:

perm := list
where list is a list of booleans which determine whether the permutation group output
for the automorphism group should contain: the degree, the extended automorphisms, the
automorphism matrices, and the permutations, respectively.

orbit := list
where list is a list of booleans which determine whether the orbit output of the action
of the automorphism group should contain: a summary, and a complete listing of orbits,
respectively. (It’s possible to have both a summary and a complete listing.)

group := list
where list is a list of booleans which determine whether the group output should contain:
the standard matrix of each allowable subgroup, the presentation of reduced p-covering
groups, the presentation of immediate descendants, the nuclear rank of descendants, and
the p-multiplicator rank of descendants, respectively.

autgroup := list
where list is a list of booleans which determine whether the automorphism group output
should contain: the commutator matrix, the automorphism group description of descen-
dants, and the automorphism group order of descendants, respectively.

ANUPQ 72

trace := val
where val is a boolean which if true specifies algorithm trace data is desired. By default,
one does not get algorithm trace data.

Not providing a field (or mis-spelling it!), specifies that the default output is desired. As a
convenience, 1 is also accepted as true, and any value that is neither 1 nor true is taken as
false. Also for each list above, an unbound list entry is taken as false. Thus, for example

Example
CustomiseOutput := rec(group := [,,1], autgroup := [,1])

specifies for the group output that only the presentation of immediate descendants is desired, for
the automorphism group output only the automorphism group description of descendants should
be printed, that there should be no algorithm trace data, and that the default output should be
provided for the permutation group and orbit output.

StandardPresentationFile := filename
Specifies that the file to which the standard presentation is written has name filename . If the
first character of the string filename is not /, filename is assumed to be the path of a writable
file relative to the directory in which GAP was started. If this option is omitted it is written to
the file with the name generated by the command Filename(ANUPQData.tmpdir, "SPres"
);, i.e. the file with name "SPres" in the temporary directory in which the pq program executes.

QueueFactor := n
Specifies a queue factor of n , where n must be a positive integer. This option may be used with
PqNextClass (see PqNextClass (5.6.4)).

The queue factor is used when the pq program uses automorphisms to close a set of elements of
the p-multiplicator under their action.

The algorithm used is a spinning algorithm: it starts with a set of vectors in echelonized form
(elements of the p-multiplicator) and closes the span of these vectors under the action of the
automorphisms. For this each automorphism is applied to each vector and it is checked if the
result is contained in the span computed so far. If not, the span becomes bigger and the vector
is put into a queue and the automorphisms are applied to this vector at a later stage. The process
terminates when the automorphisms have been applied to all vectors and no new vectors have
been produced.

For each new vector it is decided, if its processing should be delayed. If the vector contains too
many non-zero entries, it is put into a second queue. The elements in this queue are processed
only when there are no elements in the first queue left.

The queue factor is a percentage figure. A vector is put into the second queue if the percentage
of its non-zero entries exceeds the queue factor.

Bounds := list
Specifies a lower and upper bound on the indices of a list, where list is a pair of positive
non-decreasing integers. See PqDisplayStructure (5.7.23) and PqDisplayAutomorphisms
(5.7.24) where this option may be used.

PrintAutomorphisms := list
Specifies that automorphism matrices be printed.

ANUPQ 73

PrintPermutations := list
Specifies that permutations of the subgroups be printed.

Filename := string
Specifies that an output or input file to be written to or read from by the pq program should have
the name string .

Chapter 7

Installing the ANUPQ Package

The ANU pq program is written in C and the package can be installed under UNIX and in envi-
ronments similar to UNIX. In particular it is known to work on Linux and Mac OS X, and also on
Windows equipped with cygwin.

The current version of the ANUPQ package requires GAP 4.8, and version 1.2 of the AutPGrp
package. However, we recommend using at least GAP 4.6 and AutPGrp 1.5.

To install the ANUPQ package, move the file anupq-XXX.tar.gz for some version number XXX
into the pkg directory in which you plan to install ANUPQ. Usually, this will be the directory pkg in
the hierarchy of your version of GAP; it is however also possible to keep an additional pkg directory
in your private directories. The only essential difference with installing ANUPQ in a pkg directory
different to the GAP home directory is that one must start GAP with the -l switch (see Section Ref-
erence: Command Line Options), e.g. if your private pkg directory is a subdirectory of mygap in
your home directory you might type:

gap -l ";myhomedir/mygap"

where myhomedir is the path to your home directory, which may be replaced by a tilde. The empty
path before the semicolon is filled in by the default path of the GAP home directory.

Then, in your chosen pkg directory, unpack anupq-XXX.tar.gz by

tar xf anupq-<XXX>.tar.gz

Change to the newly created anupq directory. Now you need to call configure. If you installed
ANUPQ into the main pkg directory, call

./configure

If you installed ANUPQ in another directory than the usual ’pkg’ subdirectory, instead call

./configure --with-gaproot=<path>

where path is the path to the GAP home directory. (You can also call

./configure --help

74

ANUPQ 75

for further options.)
What this does is look for a file sysinfo.gap in the root directory of GAP in order to determine

an architecture name for the subdirectory of bin in which to put the compiled pq binary. This only
makes sense if GAP was compiled for the same architecture that pq will be. If you have a shared file
system mounted across different architectures, then you should run configure and make for ANUPQ
for each architecture immediately after compiling GAP on the same architecture.

If you had to install the package in your own directory but wish to use the system GAP then you
will need to find out what path is. To do this, start up GAP and find out what GAP’s root path is
from finding the value of the variable GAPInfo.RootPaths, e.g.

Example
gap> GAPInfo.RootPaths;
["/usr/local/lib/gap4r4/"]

would tell you to use /usr/local/lib/gap4r4 for path .
The configure command will fetch the architecture type for which GAP has been compiled last

and create a Makefile. You can now simply call

make

to compile the binary and to install it in the appropriate place.
The path of GAP (see Note below) used by the pq binary (the value GAP is set to in the make

command) may be over-ridden by setting the environment variable ANUPQ_GAP_EXEC. These values
are only of interest when the pq program is run as a standalone; however, the testPq script assumes
you have set one of these correctly (see Section ‘Testing your ANUPQ installation’). When the pq
program is started from GAP communication occurs via an iostream, so that the pq binary does not
actually need to know a valid path for GAP is this case.

Note. By “path of GAP” we mean the path of the command used to invoke GAP (which should
be a script, e.g. the gap.sh script generated in the bin directory for the version of GAP when
GAP was compiled). The usual strategy is to copy the gap.sh script to a standard location, e.g.
/usr/local/bin/gap. It is a mistake to copy the GAP executable gap (in a directory with name
of form bin/compile-platform) to the standard location, since direct invocation of the executable
results in GAP starting without being able to find its own library (a fatal error).

7.1 Testing your ANUPQ installation

Now it is time to test the installation. After doing configure and make you will have a testPq script.
The script assumes that, if the environment variable ANUPQ_GAP_EXEC is set, it is a correct path for
GAP, or otherwise that the make call that compiled the pq program set GAP to a correct path for GAP
(see Section ‘Running the pq program as a standalone’ for more details). To run the tests, just type:

./testPq

Some of the tests the script runs take a while. Please be patient. The script checks that you not only
have a correct GAP (at least version 4.4) installation that includes the AutPGrp package, but that the
ANUPQ package and its pq binary interact correctly. You should see something like the following
output:

ANUPQ 76

Example
Made dir: /tmp/testPq
Testing installation of ANUPQ Package (version 3.1)

The first two tests check that the pq C program compiled ok.
Testing the pq binary ... OK.
Testing the pq binary’s stack size ... OK.
The pq C program compiled ok! We test it’s the right one below.

The next tests check that you have the right version of GAP
for the ANUPQ package and that GAP is finding
the right versions of the ANUPQ and AutPGrp packages.

Checking GAP ...
pq binary made with GAP set to: /usr/local/bin/gap
Starting GAP to determine version and package availability ...
GAP version (4.6.5) ... OK.
GAP found ANUPQ package (version 3.1) ... good.
GAP found pq binary (version 1.9) ... good.
GAP found AutPGrp package (version 1.5) ... good.

GAP is OK.

Checking the link between the pq binary and GAP ... OK.
Testing the standard presentation part of the pq binary ... OK.
Doing p-group generation (final GAP/ANUPQ) test ... OK.
Tests complete.
Removed dir: /tmp/testPq
Enjoy using your functional ANUPQ package!

7.2 Running the pq program as a standalone

When the pq program is run as a standalone it sometimes needs to call GAP to compute stabilisers
of subgroups; in doing so, it first checks the value of the environment variable ANUPQ_GAP_EXEC, and
uses that, if set, or otherwise the value of GAP it was compiled with, as the path for GAP. If you ran
testPq (see Section ‘Testing your ANUPQ installation’) and you got both GAP is OK and the link
between the pq binary and GAP is OK, you should be fine. Otherwise heed the recommendations of
the error messages you get and run the testPq until all tests are passed.

It is especially important that the GAP, whose path you gave, should know where to find the
ANUPQ and AutPGrp packages. To ensure this the path should be to a shell script that invokes GAP.
If you needed to install the needed packages in your own directory (because, say, you are not a system
administrator) then you should create your own shell script that runs GAP with a correct setting of
the -l option and set the path used by the pq binary to the path of that script. To create the script
that runs GAP it is easiest to copy the system one and edit it, e.g. start by executing the following
UNIX commands (skip the second step if you already have a bin directory; you@unix> is your UNIX
prompt):

you@unix> cd
you@unix> mkdir bin
you@unix> cd bin
you@unix> which gap

ANUPQ 77

/usr/local/bin/gap
you@unix> cp /usr/local/bin/gap mygap
you@unix> chmod +x mygap

At the second-last step use the path of GAP returned by which gap. Now hopefully you will have a
copy of the script that runs the system GAP in mygap. Now use your favourite editor to edit the -l
part of the last line of mygap which should initially look something like:

exec $GAP_DIR/bin/$GAP_PRG -m $GAP_MEM -o 970m -l $GAP_DIR $*

so that it becomes (the tilde is a UNIX abbreviation for your home directory):

exec $GAP_DIR/bin/$GAP_PRG -m $GAP_MEM -o 970m -l "$GAP_DIR;~/gapstuff" $*

assuming that your personal GAP pkg directory is a subdirectory of gapstuff in your home directory.
Finally, to let the pq program know where GAP is and also know where your pkg directory is that
contains ANUPQ, set the environment variable ANUPQ_GAP_EXEC to the complete (i.e. absolute) path
of your mygap script (do not use the tilde abbreviation).

Appendix A

Examples

There are a large number of examples provided with the ANUPQ package. These may be executed
or displayed via the function PqExample (see PqExample (3.4.4)). Each example resides in a file of
the same name in the directory examples. Most of the examples are translations to GAP of examples
provided for the pq standalone by Eamonn O’Brien; the standalone examples are found in directo-
ries standalone/examples (p-quotient and p-group generation examples) and standalone/isom
(standard presentation examples). The first line of each example indicates its origin. All the exam-
ples seen in earlier chapters of this manual are also available as examples, in a slightly modified form
(the example which one can run in order to see something very close to the text example “live” is
always indicated near – usually immediately after – the text example). The format of the (PqExample)
examples is such that they can be read by the standard Read function of GAP, but certain features
and comments are interpreted by the function PqExample to do somewhat more than Read does. In
particular, any function without a -i, -ni or .g suffix has both a non-interactive and interactive form;
in these cases, the default form is the non-interactive form, and giving PqStart as second argument
generates the interactive form.

Running PqExample without an argument or with a non-existent example Infos the available
examples and some hints on usage:

Example
gap> PqExample();
#I PqExample Index (Table of Contents)
#I -----------------------------------
#I This table of possible examples is displayed when calling ‘PqExample’
#I with no arguments, or with the argument: "index" (meant in the sense
#I of ‘‘list’’), or with a non-existent example name.
#I
#I Examples that have a name ending in ‘-ni’ are non-interactive only.
#I Examples that have a name ending in ‘-i’ are interactive only.
#I Examples with names ending in ‘.g’ also have only one form. Other
#I examples have both a non-interactive and an interactive form; call
#I ‘PqExample’ with 2nd argument ‘PqStart’ to get the interactive form
#I of the example. The substring ‘PG’ in an example name indicates a
#I p-Group Generation example, ‘SP’ indicates a Standard Presentation
#I example, ‘Rel’ indicates it uses the ‘Relators’ option, and ‘Id’
#I indicates it uses the ‘Identities’ option.
#I
#I The following ANUPQ examples are available:
#I

78

ANUPQ 79

#I p-Quotient examples:
#I general:
#I "Pq" "Pq-ni" "PqEpimorphism"
#I "PqPCover" "PqSupplementInnerAutomorphisms"
#I 2-groups:
#I "2gp-Rel" "2gp-Rel-i" "2gp-a-Rel-i"
#I "B2-4" "B2-4-Id" "B2-8-i"
#I "B4-4-i" "B4-4-a-i" "B5-4.g"
#I 3-groups:
#I "3gp-Rel-i" "3gp-a-Rel" "3gp-a-Rel-i"
#I "3gp-a-x-Rel-i" "3gp-maxoccur-Rel-i"
#I 5-groups:
#I "5gp-Rel-i" "5gp-a-Rel-i" "5gp-b-Rel-i"
#I "5gp-c-Rel-i" "5gp-metabelian-Rel-i" "5gp-maxoccur-Rel-i"
#I "F2-5-i" "B2-5-i" "R2-5-i"
#I "R2-5-x-i" "B5-5-Engel3-Id"
#I 7-groups:
#I "7gp-Rel-i"
#I 11-groups:
#I "11gp-i" "11gp-Rel-i" "11gp-a-Rel-i"
#I "11gp-3-Engel-Id" "11gp-3-Engel-Id-i"
#I
#I p-Group Generation examples:
#I general:
#I "PqDescendants-1" "PqDescendants-2" "PqDescendants-3"
#I "PqDescendants-1-i"
#I 2-groups:
#I "2gp-PG-i" "2gp-PG-2-i" "2gp-PG-3-i"
#I "2gp-PG-4-i" "2gp-PG-e4-i"
#I "PqDescendantsTreeCoclassOne-16-i"
#I 3-groups:
#I "3gp-PG-i" "3gp-PG-4-i" "3gp-PG-x-i"
#I "3gp-PG-x-1-i" "PqDescendants-treetraverse-i"
#I "PqDescendantsTreeCoclassOne-9-i"
#I 5-groups:
#I "5gp-PG-i" "Nott-PG-Rel-i" "Nott-APG-Rel-i"
#I "PqDescendantsTreeCoclassOne-25-i"
#I 7,11-groups:
#I "7gp-PG-i" "11gp-PG-i"
#I
#I Standard Presentation examples:
#I general:
#I "StandardPresentation" "StandardPresentation-i"
#I "EpimorphismStandardPresentation"
#I "EpimorphismStandardPresentation-i" "IsIsomorphicPGroup-ni"
#I 2-groups:
#I "2gp-SP-Rel-i" "2gp-SP-1-Rel-i" "2gp-SP-2-Rel-i"
#I "2gp-SP-3-Rel-i" "2gp-SP-4-Rel-i" "2gp-SP-d-Rel-i"
#I "gp-256-SP-Rel-i" "B2-4-SP-i" "G2-SP-Rel-i"
#I 3-groups:
#I "3gp-SP-Rel-i" "3gp-SP-1-Rel-i" "3gp-SP-2-Rel-i"
#I "3gp-SP-3-Rel-i" "3gp-SP-4-Rel-i" "G3-SP-Rel-i"

ANUPQ 80

#I 5-groups:
#I "5gp-SP-Rel-i" "5gp-SP-a-Rel-i" "5gp-SP-b-Rel-i"
#I "5gp-SP-big-Rel-i" "5gp-SP-d-Rel-i" "G5-SP-Rel-i"
#I "G5-SP-a-Rel-i" "Nott-SP-Rel-i"
#I 7-groups:
#I "7gp-SP-Rel-i" "7gp-SP-a-Rel-i" "7gp-SP-b-Rel-i"
#I 11-groups:
#I "11gp-SP-a-i" "11gp-SP-a-Rel-i" "11gp-SP-a-Rel-1-i"
#I "11gp-SP-b-i" "11gp-SP-b-Rel-i" "11gp-SP-c-Rel-i"
#I
#I Notes
#I -----
#I 1. The example (first) argument of ‘PqExample’ is a string; each
#I example above is in double quotes to remind you to include them.
#I 2. Some examples accept options. To find out whether a particular
#I example accepts options, display it first (by including ‘Display’
#I as last argument) which will also indicate how ‘PqExample’
#I interprets the options, e.g. ‘PqExample("11gp-SP-a-i", Display);’.
#I 3. Try ‘SetInfoLevel(InfoANUPQ, <n>);’ for some <n> in [2 .. 4]
#I before calling PqExample, to see what’s going on behind the scenes.
#I

If on your terminal you are unable to scroll back, an alternative to typing PqExample(); to see the
displayed examples is to use on-line help, i.e. you may type:

Example
gap> ?anupq:examples

which will display this appendix in a GAP session. If you are not fussed about the order in which
the examples are organised, AllPqExamples(); lists the available examples relatively compactly
(see AllPqExamples (3.4.5)).

In the remainder of this appendix we will discuss particular aspects related to the Relators
(see 6.2) and Identities (see 6.2) options, and the construction of the Burnside group B(5,4).

A.1 The Relators Option

The Relators option was included because computations involving words containing commutators
that are pre-expanded by GAP before being passed to the pq program may run considerably more
slowly, than the same computations being run with GAP pre-expansions avoided. The following
examples demonstrate a case where the performance hit due to pre-expansion of commutators by
GAP is a factor of order 100 (in order to see timing information from the pq program, we set the
InfoANUPQ level to 2).

Firstly, we run the example that allows pre-expansion of commutators (the function
PqLeftNormComm is provided by the ANUPQ package; see PqLeftNormComm (3.4.1)). Note that
since the two commutators of this example are very long (taking more than an page to print), we have
edited the output at this point.

Example
gap> SetInfoLevel(InfoANUPQ, 2); #to see timing information
gap> PqExample("11gp-i");
#I #Example: "11gp-i" . . . based on: examples/11gp

ANUPQ 81

#I F, a, b, c, R, procId are local to ‘PqExample’
gap> F := FreeGroup("a", "b", "c"); a := F.1; b := F.2; c := F.3;
<free group on the generators [a, b, c]>
a
b
c
gap> R := [PqLeftNormComm([b, a, a, b, c])^11,
> PqLeftNormComm([a, b, b, a, b, c])^11, (a * b)^11];;
gap> procId := PqStart(F/R : Prime := 11);
1
gap> PqPcPresentation(procId : ClassBound := 7,
> OutputLevel := 1);
#I Lower exponent-11 central series for [grp]
#I Group: [grp] to lower exponent-11 central class 1 has order 11^3
#I Group: [grp] to lower exponent-11 central class 2 has order 11^8
#I Group: [grp] to lower exponent-11 central class 3 has order 11^19
#I Group: [grp] to lower exponent-11 central class 4 has order 11^42
#I Group: [grp] to lower exponent-11 central class 5 has order 11^98
#I Group: [grp] to lower exponent-11 central class 6 has order 11^228
#I Group: [grp] to lower exponent-11 central class 7 has order 11^563
#I Computation of presentation took 27.04 seconds
gap> PqSavePcPresentation(procId, ANUPQData.outfile);
#I Variables used in ‘PqExample’ are saved in ‘ANUPQData.example.vars’.

Now we do the same calculation using the Relators option. In this way, the commutators are passed
directly as strings to the pq program, so that GAP does not “see” them and pre-expand them.

Example
gap> PqExample("11gp-Rel-i");
#I #Example: "11gp-Rel-i" . . . based on: examples/11gp
#I #(equivalent to "11gp-i" example but uses ‘Relators’ option)
#I F, rels, procId are local to ‘PqExample’
gap> F := FreeGroup("a", "b", "c");
<free group on the generators [a, b, c]>
gap> rels := ["[b, a, a, b, c]^11", "[a, b, b, a, b, c]^11", "(a * b)^11"];
["[b, a, a, b, c]^11", "[a, b, b, a, b, c]^11", "(a * b)^11"]
gap> procId := PqStart(F : Prime := 11, Relators := rels);
2
gap> PqPcPresentation(procId : ClassBound := 7,
> OutputLevel := 1);
#I Relators parsed ok.
#I Lower exponent-11 central series for [grp]
#I Group: [grp] to lower exponent-11 central class 1 has order 11^3
#I Group: [grp] to lower exponent-11 central class 2 has order 11^8
#I Group: [grp] to lower exponent-11 central class 3 has order 11^19
#I Group: [grp] to lower exponent-11 central class 4 has order 11^42
#I Group: [grp] to lower exponent-11 central class 5 has order 11^98
#I Group: [grp] to lower exponent-11 central class 6 has order 11^228
#I Group: [grp] to lower exponent-11 central class 7 has order 11^563
#I Computation of presentation took 0.27 seconds
gap> PqSavePcPresentation(procId, ANUPQData.outfile);
#I Variables used in ‘PqExample’ are saved in ‘ANUPQData.example.vars’.

ANUPQ 82

A.2 The Identities Option and PqEvaluateIdentities Function

Please pay heed to the warnings given for the Identities option (see 6.2); it is written mainly at
the GAP level and is not particularly optimised. The Identities option allows one to compute p-
quotients that satisfy an identity. A trivial example better done using the Exponent option, but which
nevertheless demonstrates the usage of the Identities option, is as follows:

Example
gap> SetInfoLevel(InfoANUPQ, 1);
gap> PqExample("B2-4-Id");
#I #Example: "B2-4-Id" . . . alternative way to generate B(2, 4)
#I #Generates B(2, 4) by using the ‘Identities’ option
#I #... this is not as efficient as using ‘Exponent’ but
#I #demonstrates the usage of the ‘Identities’ option.
#I F, f, procId are local to ‘PqExample’
gap> F := FreeGroup("a", "b");
<free group on the generators [a, b]>
gap> # All words w in the pc generators of B(2, 4) satisfy f(w) = 1
gap> f := w -> w^4;
function(w) ... end
gap> Pq(F : Prime := 2, Identities := [f]);
#I Class 1 with 2 generators.
#I Class 2 with 5 generators.
#I Class 3 with 7 generators.
#I Class 4 with 10 generators.
#I Class 5 with 12 generators.
#I Class 5 with 12 generators.
<pc group of size 4096 with 12 generators>
#I Variables used in ‘PqExample’ are saved in ‘ANUPQData.example.vars’.
gap> time;
1400

Note that the time statement gives the time in milliseconds spent by GAP in executing the
PqExample("B2-4-Id"); command (i.e. everything up to the Info-ing of the variables used), but
over 90% of that time is spent in the final Pq statement. The time spent by the pq program, which is
negligible anyway (you can check this by running the example while the InfoANUPQ level is set to 2),
is not counted by time.

Since the identity used in the above construction of B(2,4) is just an exponent law, the “right” way
to compute it is via the Exponent option (see 6.2), which is implemented at the C level and is highly
optimised. Consequently, the Exponent option is significantly faster, generally by several orders of
magnitude:

Example
gap> SetInfoLevel(InfoANUPQ, 2); # to see time spent by the ‘pq’ program
gap> PqExample("B2-4");
#I #Example: "B2-4" . . . the ‘‘right’’ way to generate B(2, 4)
#I #Generates B(2, 4) by using the ‘Exponent’ option
#I F, procId are local to ‘PqExample’
gap> F := FreeGroup("a", "b");
<free group on the generators [a, b]>
gap> Pq(F : Prime := 2, Exponent := 4);
#I Computation of presentation took 0.00 seconds
<pc group of size 4096 with 12 generators>

ANUPQ 83

#I Variables used in ‘PqExample’ are saved in ‘ANUPQData.example.vars’.
gap> time; # time spent by GAP in executing ‘PqExample("B2-4");’
50

The following example uses the Identities option to compute a 3-Engel group for the prime 11.
As is the case for the example "B2-4-Id", the example has both a non-interactive and an interactive
form; below, we demonstrate the interactive form.

Example
gap> SetInfoLevel(InfoANUPQ, 1); # reset InfoANUPQ to default level
gap> PqExample("11gp-3-Engel-Id", PqStart);
#I #Example: "11gp-3-Engel-Id" . . . 3-Engel group for prime 11
#I #Non-trivial example of using the ‘Identities’ option
#I F, a, b, G, f, procId, Q are local to ‘PqExample’
gap> F := FreeGroup("a", "b"); a := F.1; b := F.2;
<free group on the generators [a, b]>
a
b
gap> G := F/[a^11, b^11];
<fp group on the generators [a, b]>
gap> # All word pairs u, v in the pc generators of the 11-quotient Q of G
gap> # must satisfy the Engel identity: [u, v, v, v] = 1.
gap> f := function(u, v) return PqLeftNormComm([u, v, v, v]); end;
function(u, v) ... end
gap> procId := PqStart(G);
3
gap> Q := Pq(procId : Prime := 11, Identities := [f]);
#I Class 1 with 2 generators.
#I Class 2 with 3 generators.
#I Class 3 with 5 generators.
#I Class 3 with 5 generators.
<pc group of size 161051 with 5 generators>
gap> # We do a ‘‘sample’’ check that pairs of elements of Q do satisfy
gap> # the given identity:
gap> f(Random(Q), Random(Q));
<identity> of ...
gap> f(Q.1, Q.2);
<identity> of ...
#I Variables used in ‘PqExample’ are saved in ‘ANUPQData.example.vars’.

The (interactive) call to Pq above is essentially equivalent to a call to PqPcPresentation with
the same arguments and options followed by a call to PqCurrentGroup. Moreover, the call to
PqPcPresentation (as described in PqPcPresentation (5.6.1)) is equivalent to a “class 1” call
to PqPcPresentation followed by the requisite number of calls to PqNextClass, and with the
Identities option set, both PqPcPresentation and PqNextClass “quietly” perform the equivalent
of a PqEvaluateIdentities call. In the following example we break down the Pq call into its low-
level equivalents, and set and unset the Identities option to show where PqEvaluateIdentities
fits into this scheme.

Example
gap> PqExample("11gp-3-Engel-Id-i");
#I #Example: "11gp-3-Engel-Id-i" . . . 3-Engel grp for prime 11
#I #Variation of "11gp-3-Engel-Id" broken down into its lower-level component

ANUPQ 84

#I #command parts.
#I F, a, b, G, f, procId, Q are local to ‘PqExample’
gap> F := FreeGroup("a", "b"); a := F.1; b := F.2;
<free group on the generators [a, b]>
a
b
gap> G := F/[a^11, b^11];
<fp group on the generators [a, b]>
gap> # All word pairs u, v in the pc generators of the 11-quotient Q of G
gap> # must satisfy the Engel identity: [u, v, v, v] = 1.
gap> f := function(u, v) return PqLeftNormComm([u, v, v, v]); end;
function(u, v) ... end
gap> procId := PqStart(G : Prime := 11);
4
gap> PqPcPresentation(procId : ClassBound := 1);
gap> PqEvaluateIdentities(procId : Identities := [f]);
#I Class 1 with 2 generators.
gap> for c in [2 .. 4] do
> PqNextClass(procId : Identities := []); #reset ‘Identities’ option
> PqEvaluateIdentities(procId : Identities := [f]);
> od;
#I Class 2 with 3 generators.
#I Class 3 with 5 generators.
#I Class 3 with 5 generators.
gap> Q := PqCurrentGroup(procId);
<pc group of size 161051 with 5 generators>
gap> # We do a ‘‘sample’’ check that pairs of elements of Q do satisfy
gap> # the given identity:
gap> f(Random(Q), Random(Q));
<identity> of ...
gap> f(Q.1, Q.2);
<identity> of ...
#I Variables used in ‘PqExample’ are saved in ‘ANUPQData.example.vars’.

A.3 A Large Example

An example demonstrating how a large computation can be organised with the ANUPQ package is the
computation of the Burnside group B(5,4), the largest group of exponent 4 generated by 5 elements.
It has order 22728 and lower exponent-p central class 13. The example "B5-4.g" computes B(5,4); it
is based on a pq standalone input file written by M. F. Newman.

To be able to do examples like this was part of the motivation to provide access to the low-level
functions of the standalone program from within GAP.

Please note that the construction uses the knowledge gained by Newman and O’Brien in their
initial construction of B(5,4), in particular, insight into the commutator structure of the group and the
knowledge of the p-central class and the order of B(5,4). Therefore, the construction cannot be used
to prove that B(5,4) has the order and class mentioned above. It is merely a reconstruction of the
group. More information is contained in the header of the file examples/B5-4.g.

Example
procId := PqStart(FreeGroup(5) : Exponent := 4, Prime := 2);
Pq(procId : ClassBound := 2);

ANUPQ 85

PqSupplyAutomorphisms(procId,
[

[[1, 1, 0, 0, 0], # first automorphism
[0, 1, 0, 0, 0],
[0, 0, 1, 0, 0],
[0, 0, 0, 1, 0],
[0, 0, 0, 0, 1]],

[[0, 0, 0, 0, 1], # second automorphism
[1, 0, 0, 0, 0],
[0, 1, 0, 0, 0],
[0, 0, 1, 0, 0],
[0, 0, 0, 1, 0]]

]);;

Relations :=
[[], ## class 1

[], ## class 2
[], ## class 3
[], ## class 4
[], ## class 5
[], ## class 6
class 7
[["x2","x1","x1","x3","x4","x4","x4"]],
class 8
[["x2","x1","x1","x3","x4","x5","x5","x5"]],
class 9
[["x2","x1","x1","x3","x4","x4","x5","x5","x5"],

["x2","x1","x1","x2","x3","x4","x5","x5","x5"],
["x2","x1","x1","x3","x3","x4","x5","x5","x5"]],

class 10
[["x2","x1","x1","x2","x3","x3","x4","x5","x5","x5"],

["x2","x1","x1","x3","x3","x4","x4","x5","x5","x5"]],
class 11
[["x2","x1","x1","x2","x3","x3","x4","x4","x5","x5","x5"],

["x2","x1","x1","x2","x3","x1","x3","x4","x2","x4","x3"]],
class 12
[["x2","x1","x1","x2","x3","x1","x3","x4","x2","x5","x5","x5"],

["x2","x1","x1","x3","x2","x4","x3","x5","x4","x5","x5","x5"]],
class 13
[["x2","x1","x1","x2","x3","x1","x3","x4","x2","x4","x5","x5","x5"

]]
];

for class in [3 .. 13] do
Print("Computing class ", class, "\n");
PqSetupTablesForNextClass(procId);

for w in [class, class-1 .. 7] do

PqAddTails(procId, w);
PqDisplayPcPresentation(procId);

ANUPQ 86

if Relations[w] <> [] then
recalculate automorphisms
PqExtendAutomorphisms(procId);

for r in Relations[w] do
Print("Collecting ", r, "\n");
PqCommutator(procId, r, 1);
PqEchelonise(procId);
PqApplyAutomorphisms(procId, 15); #queue factor = 15

od;

PqEliminateRedundantGenerators(procId);
fi;
PqComputeTails(procId, w);

od;
PqDisplayPcPresentation(procId);

smallclass := Minimum(class, 6);
for w in [smallclass, smallclass-1 .. 2] do

PqTails(procId, w);
od;
recalculate automorphisms
PqExtendAutomorphisms(procId);
PqCollect(procId, "x5^4");
PqEchelonise(procId);
PqApplyAutomorphisms(procId, 15); #queue factor = 15
PqEliminateRedundantGenerators(procId);
PqDisplayPcPresentation(procId);

od;

A.4 Developing descendants trees

In the following example we will explore the 3-groups of rank 2 and 3-coclass 1 up to 3-class 5. This
will be done using the p-group generation machinery of the package. We start with the elementary
abelian 3-group of rank 2. From within GAP, run the example "PqDescendants-treetraverse-i"
via PqExample (see PqExample (3.4.4)).

Example
gap> G := ElementaryAbelianGroup(9);
<pc group of size 9 with 2 generators>
gap> procId := PqStart(G);
5
gap> #
gap> # Below, we use the option StepSize in order to construct descendants
gap> # of coclass 1. This is equivalent to setting the StepSize to 1 in
gap> # each descendant calculation.
gap> #
gap> # The elementary abelian group of order 9 has 3 descendants of
gap> # 3-class 2 and 3-coclass 1, as the result of the next command
gap> # shows.
gap> #

ANUPQ 87

gap> PqDescendants(procId : StepSize := 1);
[<pc group of size 27 with 3 generators>,

<pc group of size 27 with 3 generators>,
<pc group of size 27 with 3 generators>]

gap> #
gap> # Now we will compute the descendants of coclass 1 for each of the
gap> # groups above. Then we will compute the descendants of coclass 1
gap> # of each descendant and so on. Note that the pq program keeps
gap> # one file for each class at a time. For example, the descendants
gap> # calculation for the second group of class 2 overwrites the
gap> # descendant file obtained from the first group of class 2.
gap> # Hence, we have to traverse the descendants tree in depth first
gap> # order.
gap> #
gap> PqPGSetDescendantToPcp(procId, 2, 1);
gap> PqPGExtendAutomorphisms(procId);
gap> PqPGConstructDescendants(procId : StepSize := 1);
2
gap> PqPGSetDescendantToPcp(procId, 3, 1);
gap> PqPGExtendAutomorphisms(procId);
gap> PqPGConstructDescendants(procId : StepSize := 1);
2
gap> PqPGSetDescendantToPcp(procId, 4, 1);
gap> PqPGExtendAutomorphisms(procId);
gap> PqPGConstructDescendants(procId : StepSize := 1);
2
gap> #
gap> # At this point we stop traversing the ‘‘left most’’ branch of the
gap> # descendants tree and move upwards.
gap> #
gap> PqPGSetDescendantToPcp(procId, 4, 2);
gap> PqPGExtendAutomorphisms(procId);
gap> PqPGConstructDescendants(procId : StepSize := 1);
#I group restored from file is incapable
0
gap> PqPGSetDescendantToPcp(procId, 3, 2);
gap> PqPGExtendAutomorphisms(procId);
gap> PqPGConstructDescendants(procId : StepSize := 1);
#I group restored from file is incapable
0
gap> #
gap> # The computations above indicate that the descendants subtree under
gap> # the first descendant of the elementary abelian group of order 9
gap> # will have only one path of infinite length.
gap> #
gap> PqPGSetDescendantToPcp(procId, 2, 2);
gap> PqPGExtendAutomorphisms(procId);
gap> PqPGConstructDescendants(procId : StepSize := 1);
4
gap> #
gap> # We get four descendants here, three of which will turn out to be
gap> # incapable, i.e., they have no descendants and are terminal nodes

ANUPQ 88

gap> # in the descendants tree.
gap> #
gap> PqPGSetDescendantToPcp(procId, 2, 3);
gap> PqPGExtendAutomorphisms(procId);
gap> PqPGConstructDescendants(procId : StepSize := 1);
#I group restored from file is incapable
0
gap> #
gap> # The third descendant of class three is incapable. Let us return
gap> # to the second descendant of class 2.
gap> #
gap> PqPGSetDescendantToPcp(procId, 2, 2);
gap> PqPGExtendAutomorphisms(procId);
gap> PqPGConstructDescendants(procId : StepSize := 1);
4
gap> PqPGSetDescendantToPcp(procId, 3, 1);
gap> PqPGExtendAutomorphisms(procId);
gap> PqPGConstructDescendants(procId : StepSize := 1);
#I group restored from file is incapable
0
gap> PqPGSetDescendantToPcp(procId, 3, 2);
gap> PqPGExtendAutomorphisms(procId);
gap> PqPGConstructDescendants(procId : StepSize := 1);
#I group restored from file is incapable
0
gap> #
gap> # We skip the third descendant for the moment ...
gap> #
gap> PqPGSetDescendantToPcp(procId, 3, 4);
gap> PqPGExtendAutomorphisms(procId);
gap> PqPGConstructDescendants(procId : StepSize := 1);
#I group restored from file is incapable
0
gap> #
gap> # ... and look at it now.
gap> #
gap> PqPGSetDescendantToPcp(procId, 3, 3);
gap> PqPGExtendAutomorphisms(procId);
gap> PqPGConstructDescendants(procId : StepSize := 1);
6
gap> #
gap> # In this branch of the descendant tree we get 6 descendants of class
gap> # three. Of those 5 will turn out to be incapable and one will have
gap> # 7 descendants.
gap> #
gap> PqPGSetDescendantToPcp(procId, 4, 1);
gap> PqPGExtendAutomorphisms(procId);
gap> PqPGConstructDescendants(procId : StepSize := 1);
#I group restored from file is incapable
0
gap> PqPGSetDescendantToPcp(procId, 4, 2);
gap> PqPGExtendAutomorphisms(procId);

ANUPQ 89

gap> PqPGConstructDescendants(procId : StepSize := 1);
7
gap> PqPGSetDescendantToPcp(procId, 4, 3);
gap> PqPGExtendAutomorphisms(procId);
gap> PqPGConstructDescendants(procId : StepSize := 1);
#I group restored from file is incapable
0

To automate the above procedure to some extent we provide:

A.4.1 PqDescendantsTreeCoclassOne

. PqDescendantsTreeCoclassOne(i) (function)

. PqDescendantsTreeCoclassOne() (function)

for the i th or default interactive ANUPQ process, generate a descendant tree for the group
of the process (which must be a pc p-group) consisting of descendants of p-coclass 1 and ex-
tending to the class determined by the option TreeDepth (or 6 if the option is omitted). In
an XGAP session, a graphical representation of the descendants tree appears in a separate win-
dow. Subsequent calls to PqDescendantsTreeCoclassOne for the same process may be used
to extend the descendant tree from the last descendant computed that itself has more than one
descendant. PqDescendantsTreeCoclassOne also accepts the options CapableDescendants
(or AllDescendants) and any options accepted by the interactive PqDescendants function
(see PqDescendants (5.3.6)).

Notes

1. PqDescendantsTreeCoclassOne first calls PqDescendants. If PqDescendants has already
been called for the process, the previous value computed is used and a warning is Info-ed at
InfoANUPQ level 1.

2. As each descendant is processed its unique label defined by the pq program and number of
descendants is Info-ed at InfoANUPQ level 1.

3. PqDescendantsTreeCoclassOne is an “experimental” function that is included to demonstrate
the sort of things that are possible with the p-group generation machinery.

Ignoring the extra functionality provided in an XGAP session, PqDescendantsTreeCoclassOne,
with one argument that is the index of an interactive ANUPQ process, is approximately equivalent to:

PqDescendantsTreeCoclassOne := function(procId)
local des, i;

des := PqDescendants(procId : StepSize := 1);
RecurseDescendants(procId, 2, Length(des));

end;

where RecurseDescendants is (approximately) defined as follows:

RecurseDescendants := function(procId, class, n)
local i, nr;

ANUPQ 90

if class > ValueOption("TreeDepth") then return; fi;

for i in [1..n] do
PqPGSetDescendantToPcp(procId, class, i);
PqPGExtendAutomorphisms(procId);
nr := PqPGConstructDescendants(procId : StepSize := 1);
Print("Number of descendants of group ", i,

" at class ", class, ": ", nr, "\n");
RecurseDescendants(procId, class+1, nr);

od;
return;

end;

The following examples (executed via PqExample; see PqExample (3.4.4)), demonstrate the use of
PqDescendantsTreeCoclassOne:

"PqDescendantsTreeCoclassOne-9-i"
approximately does example "PqDescendants-treetraverse-i" again using
PqDescendantsTreeCoclassOne;

"PqDescendantsTreeCoclassOne-16-i"
uses the option CapableDescendants; and

"PqDescendantsTreeCoclassOne-25-i"
calculates all descendants by omitting the CapableDescendants option.

The numbers 9, 16 and 25 respectively, indicate the order of the elementary abelian group to which
PqDescendantsTreeCoclassOne is applied for these examples.

References

[HN80] George Havas and M. F. Newman. Application of computers to questions like those of
Burnside. In Burnside groups (Proc. Workshop, Univ. Bielefeld, Bielefeld, 1977), volume
806 of Lecture Notes in Math., pages 211–230. Springer, Berlin, 1980. 8, 9

[LGS90] C. R. Leedham-Green and L. H. Soicher. Collection from the left and other strategies. J.
Symbolic Comput., 9(5-6):665–675, 1990. Computational group theory, Part 1. 6

[New77] M. F. Newman. Determination of groups of prime-power order. In Group theory (Proc.
Miniconf., Australian Nat. Univ., Canberra, 1975), pages 73–84. Lecture Notes in Math.,
Vol. 573. Springer, Berlin, 1977. 7, 9

[NNN98] M. F. Newman, Werner Nickel, and Alice C. Niemeyer. Descriptions of groups of prime-
power order. J. Symbolic Comput., 25(5):665–682, 1998. 6, 7, 8, 9

[NO96] M. F. Newman and E. A. O’Brien. Application of computers to questions like those of
Burnside. II. Internat. J. Algebra Comput., 6(5):593–605, 1996. 8, 9

[O’B90] E. A. O’Brien. The p-group generation algorithm. J. Symbolic Comput., 9(5-6):677–698,
1990. Computational group theory, Part 1. 7, 8, 9, 10

[O’B94] E. A. O’Brien. Isomorphism testing for p-groups. J. Symbolic Comput., 17(2):131, 133–
147, 1994. 10

[O’B95] E. A. O’Brien. Computing automorphism groups of p-groups. In Computational algebra
and number theory (Sydney, 1992), volume 325 of Math. Appl., pages 83–90. Kluwer Acad.
Publ., Dordrecht, 1995. 10

[Sim94] Charles C. Sims. Computation with finitely presented groups, volume 48 of Encyclopedia
of Mathematics and its Applications. Cambridge University Press, Cambridge, 1994. 8

[VL84] M. R. Vaughan-Lee. An aspect of the nilpotent quotient algorithm. In Computational group
theory (Durham, 1982), pages 75–83. Academic Press, London, 1984. 7, 8

[VL90a] M. R. Vaughan-Lee. Collection from the left. J. Symbolic Comput., 9(5-6):725–733, 1990.
Computational group theory, Part 1. 6

[VL90b] Michael Vaughan-Lee. The restricted Burnside problem, volume 5 of London Mathematical
Society Monographs. New Series. The Clarendon Press Oxford University Press, New York,
1990. Oxford Science Publications. 9

91

Index

AllANUPQoptions, 66
allowable subgroup, 8
AllPqExamples, 18
ANUPQ, 4
ANUPQ_GAP_EXEC

environment variable, 75, 76
ANUPQData, 12
ANUPQDirectoryTemporary, 15
ANUPQoptions, 66
ANUPQWarnOfOtherOptions, 20
automorphisms

of p-groups, 28, 40

B(5,4), 84
banner, 11
bug reports, 5

capable, 7
class, 7
collection, 6
compaction, 10
confluent, 6
confluent rewriting system, 6
consistency conditions, 7
consistent, 6

definition
of generator, 8

descendant, 7

echelonised matrix, 10
Engel identity, 8
EpimorphismPqStandardPresentation, 29

interactive, 41
EpimorphismStandardPresentation, 29

interactive, 41
exponent check, 9
exponent law, 8
exponent-p central series, 7
extended automorphism, 8

GrepPqExamples, 18

identical relation, 8
immediate descendant, 7
InfoANUPQ, 15
interruption, 37
IsCapable, 18
IsIsomorphicPGroup, 30
isomorphism testing, 10
IsPqIsomorphicPGroup, 30
IsPqProcessAlive, 37

for default process, 37

label of standard matrix, 10
labelled pcp, 8
law, 8

menu item
of pq program, 19

metabelian law, 8
multiplicator rank, 7
MultiplicatorRank, 18

NuclearRank, 18
nucleus, 7, 8

option
of pq program is a menu item, 19

option AllDescendants, 31, 43, 70
option BasicAlgorithm, 32, 43, 71
option Bounds, 72
option CapableDescendants, 31, 43, 70
option ClassBound, 24, 28, 31, 38, 40, 43, 59, 67
option CustomiseOutput, 32, 43, 71
option Exponent, 24, 28, 31, 38, 40, 43, 67
option Filename, 73
option GroupName, 24, 28, 32, 38, 40, 43, 68
option Identities, 24, 38, 68

example of usage, 25
option Metabelian, 24, 28, 31, 38, 40, 43, 68

92

ANUPQ 93

option NumberOfSolubleAutomorphisms, 71
option OrderBound, 31, 43, 70
option OutputLevel, 24, 28, 38, 40, 69
option PcgsAutomorphisms, 59, 69
option pQuotient, 28, 40, 67
option PqWorkspace, 24, 28, 32, 69
option Prime, 24, 28, 37, 40, 67
option PrintAutomorphisms, 72
option PrintPermutations, 73
option QueueFactor, 49, 72
option RankInitialSegmentSubgroups, 31, 43, 70
option RedoPcp, 38, 69
option RelativeOrders, 71
option Relators, 24, 31, 38, 43, 67

example of usage, 25
option SetupFile, 24, 28, 32, 69
option SpaceEfficient, 31, 43, 70
option StandardPresentationFile, 28, 40, 60, 72
option StepSize, 31, 43, 70
option SubList, 32, 43, 71
option TreeDepth, 71
orbits, 9

p-class, 7
p-cover, 7
p-covering group, 7
p-group generation, 9
p-multiplicator, 7
p-multiplicator rank, 7
pc generators, 6
pc presentation, 6
pcp, 6
permutations, 8
power-commutator presentation, 6
Pq, 23

interactive, 37
interactive, for default process, 37

PqAddTails, 52
for default process, 52

PqAPGDegree, 63
for default process, 63

PqAPGOrbitRepresentatives, 63
for default process, 63

PqAPGOrbits, 63
for default process, 63

PqAPGPermutations, 63
for default process, 63

PqAPGSingleStage, 63
for default process, 63

PqApplyAutomorphisms, 57
for default process, 57

PqCollect, 50
for default process, 50

PqCollectDefiningRelations, 53
for default process, 53

PqCollectWordInDefiningGenerators, 53
for default process, 53

PqCommutator, 51
for default process, 51

PqCommutatorDefiningGenerators, 54
for default process, 54

PqCompact, 56
for default process, 56

PqComputePCover, 50
for default process, 50

PqComputeTails, 52
for default process, 52

PqCurrentGroup, 47
for default process, 47

PqDescendants, 31
interactive, 42
interactive, for default process, 42

PqDescendantsTreeCoclassOne, 89
for default process, 89

PqDisplayAutomorphisms, 58
for default process, 58

PqDisplayPcPresentation, 47
for default process, 47

PqDisplayStructure, 57
for default process, 57

PqDoConsistencyCheck, 55
for default process, 55

PqDoConsistencyChecks, 52
for default process, 52

PqDoExponentChecks, 54
for default process, 54

PqEchelonise, 56
for default process, 56

PqEliminateRedundantGenerators, 54
for default process, 54

PqEpimorphism, 26
interactive, 39
interactive, for default process, 39

ANUPQ 94

PqEvaluateIdentities, 48
for default process, 48

PqExample, 17
no arguments, 17
with filename, 17

PqExtendAutomorphisms, 57
for default process, 57

PqFactoredOrder, 46
for default process, 46

PqGAPRelators, 16
PqJacobi, 55

for default process, 55
PqLeftNormComm, 16
PqList, 34
PqNextClass, 49

for default process, 49
PqNrPcGenerators, 46

for default process, 46
PqOrder, 46

for default process, 46
PqParseWord, 17
PqPClass, 47

for default process, 47
PqPCover, 26

interactive, 39
interactive, for default process, 39

PqPcPresentation, 48
for default process, 48

PqPGConstructDescendants, 61
for default process, 61

PqPGExtendAutomorphisms, 61
for default process, 61

PqPGRestoreDescendantFromFile, 62
for default process, 62
with class, 62
with class, for default process, 62

PqPGSetDescendantToPcp, 62
for default process, 62
with class, 62
with class, for default process, 62

PqPGSupplyAutomorphisms, 61
for default process, 61

PqProcessIndex, 36
for default process, 36

PqProcessIndices, 37
PqQuit, 36

for default process, 36
PqQuitAll, 36
PqRead, 64

for default process, 64
PqReadAll, 64

for default process, 64
PqReadUntil, 64

for default process, 64
with modify map, 64
with modify map, for default process, 64

PqRestorePcPresentation, 49
for default process, 49

PqRevertToPreviousClass, 54
for default process, 54

PqSavePcPresentation, 49
for default process, 49

PqSetMaximalOccurrences, 55
for default process, 55

PqSetMetabelian, 55
for default process, 55

PqSetOutputLevel, 47
for default process, 47

PqSetPQuotientToGroup, 45
for default process, 45

PqSetupTablesForNextClass, 51
for default process, 51

PqSolveEquation, 51
for default process, 51

PqSPCompareTwoFilePresentations, 60
for default process, 60

PqSPComputePcpAndPCover, 59
for default process, 59

PqSPIsomorphism, 60
for default process, 60

PqSPSavePresentation, 60
for default process, 60

PqSPStandardPresentation, 59
for default process, 59

PqStandardPresentation, 28
interactive, 40

PqStart, 36
with group, 35
with group and workspace size, 35
with workspace size, 35

PqSupplementInnerAutomorphisms, 33
PqSupplyAutomorphisms, 56

ANUPQ 95

for default process, 56
PqTails, 51

for default process, 51
PqWeight, 47

for default process, 47
PqWrite, 65

for default process, 65
PqWritePcPresentation, 58

for default process, 58

SavePqList, 34
standard presentation, 10
StandardPresentation, 28

interactive, 40

tails, 9
terminal, 7
ToPQLog, 18
troubleshooting tips, 20

weight function, 7
weighted pcp, 7

	Introduction
	Overview
	How to read this manual
	Authors and Acknowledgements

	Mathematical Background and Terminology
	Basic notions
	The p-quotient Algorithm
	The p-group generation Algorithm, Standard Presentation, Isomorphism Testing

	Infrastructure
	Loading the ANUPQ Package
	The ANUPQData Record
	Setting the Verbosity of ANUPQ via Info and InfoANUPQ
	Utility Functions
	Attributes and a Property for fp and pc p-groups
	Hints and Warnings regarding the use of Options

	Non-interactive ANUPQ functions
	Computing p-Quotients
	Computing Standard Presentations
	Testing p-Groups for Isomorphism
	Computing Descendants of a p-Group

	Interactive ANUPQ functions
	Starting and Stopping Interactive ANUPQ Processes
	Interactive ANUPQ Process Utility Functions
	Interactive Versions of Non-interactive ANUPQ Functions
	Low-level Interactive ANUPQ functions based on menu items of the pq program
	General commands
	Commands from the Main p-Quotient menu
	Commands from the Advanced p-Quotient menu
	Commands from the Standard Presentation menu
	Commands from the Main p-Group Generation menu
	Commands from the Advanced p-Group Generation menu
	Primitive Interactive ANUPQ Process Read/Write Functions

	ANUPQ Options
	Overview
	Detailed descriptions of ANUPQ Options

	Installing the ANUPQ Package
	Testing your ANUPQ installation
	Running the pq program as a standalone

	Examples
	The Relators Option
	The Identities Option and PqEvaluateIdentities Function
	A Large Example
	Developing descendants trees

	References
	Index

